Improving knowledge-aided STAP performance using past CPI data [radar signal processing]

D. Page, S. Scarborough, S. Crooks
{"title":"Improving knowledge-aided STAP performance using past CPI data [radar signal processing]","authors":"D. Page, S. Scarborough, S. Crooks","doi":"10.1109/NRC.2004.1316438","DOIUrl":null,"url":null,"abstract":"A technique for incorporating past coherent processing interval (CPI) radar data into knowledge-aided space-time adaptive processing (KASTAP) is described. The technique forms Earth-based clutter reflectivity maps to provide improved knowledge of clutter statistics in nonhomogeneous terrain environments. The maps are utilized to calculate predicted clutter covariance matrices as a function of range. Using a data set provided under the DARPA knowledge-aided sensor signal processing and expert reasoning (KASSPER) program, predicted clutter statistics are compared to measured statistics to verify the accuracy of the approach. Robust STAP weight vectors are calculated using a technique that combines covariance tapering, adaptive estimation of gain and phase corrections, knowledge-aided pre-whitening, and eigenvalue rescaling. Several performance metrics are calculated, including signal-to-interference plus noise (SINR) loss, target detections and false alarms, receiver operating characteristic (ROC) curves, and tracking performance. The results show a significant benefit to using knowledge-aided processing based on multiple CPI clutter reflectivity maps.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A technique for incorporating past coherent processing interval (CPI) radar data into knowledge-aided space-time adaptive processing (KASTAP) is described. The technique forms Earth-based clutter reflectivity maps to provide improved knowledge of clutter statistics in nonhomogeneous terrain environments. The maps are utilized to calculate predicted clutter covariance matrices as a function of range. Using a data set provided under the DARPA knowledge-aided sensor signal processing and expert reasoning (KASSPER) program, predicted clutter statistics are compared to measured statistics to verify the accuracy of the approach. Robust STAP weight vectors are calculated using a technique that combines covariance tapering, adaptive estimation of gain and phase corrections, knowledge-aided pre-whitening, and eigenvalue rescaling. Several performance metrics are calculated, including signal-to-interference plus noise (SINR) loss, target detections and false alarms, receiver operating characteristic (ROC) curves, and tracking performance. The results show a significant benefit to using knowledge-aided processing based on multiple CPI clutter reflectivity maps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用过去的CPI数据(雷达信号处理)提高知识辅助STAP性能
介绍了一种将过去相干处理间隔(CPI)雷达数据纳入知识辅助时空自适应处理(KASTAP)的技术。该技术形成了基于地面的杂波反射率图,以提供非均匀地形环境中杂波统计的改进知识。这些映射被用来计算作为距离函数的预测杂波协方差矩阵。利用DARPA知识辅助传感器信号处理和专家推理(KASSPER)项目提供的数据集,将预测的杂波统计数据与实测统计数据进行比较,以验证该方法的准确性。鲁棒STAP权向量的计算使用一种技术,结合了协方差逐渐变细,增益和相位校正的自适应估计,知识辅助预白化和特征值重新缩放。计算了几个性能指标,包括信号干扰加噪声(SINR)损失、目标检测和假警报、接收器工作特性(ROC)曲线和跟踪性能。结果表明,使用基于多个CPI杂波反射率图的知识辅助处理具有显著的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced geostationary radar for hurricane monitoring and studies Effect of system geometry of multi-sensor on accuracy of target position estimation Crossbeam wind measurements with phased array Doppler weather radar: theory Physics-based airborne GMTI radar signal processing Optimal invariant test in coherent radar detection with unknown parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1