SentiCR: A customized sentiment analysis tool for code review interactions

Toufique Ahmed, Amiangshu Bosu, Anindya Iqbal, S. Rahimi
{"title":"SentiCR: A customized sentiment analysis tool for code review interactions","authors":"Toufique Ahmed, Amiangshu Bosu, Anindya Iqbal, S. Rahimi","doi":"10.1109/ASE.2017.8115623","DOIUrl":null,"url":null,"abstract":"Sentiment Analysis tools, developed for analyzing social media text or product reviews, work poorly on a Software Engineering (SE) dataset. Since prior studies have found developers expressing sentiments during various SE activities, there is a need for a customized sentiment analysis tool for the SE domain. On this goal, we manually labeled 2000 review comments to build a training dataset and used our dataset to evaluate seven popular sentiment analysis tools. The poor performances of the existing sentiment analysis tools motivated us to build SentiCR, a sentiment analysis tool especially designed for code review comments. We evaluated SentiCR using one hundred 10-fold cross-validations of eight supervised learning algorithms. We found a model, trained using the Gradient Boosting Tree (GBT) algorithm, providing the highest mean accuracy (83%), the highest mean precision (67.8%), and the highest mean recall (58.4%) in identifying negative review comments.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

Abstract

Sentiment Analysis tools, developed for analyzing social media text or product reviews, work poorly on a Software Engineering (SE) dataset. Since prior studies have found developers expressing sentiments during various SE activities, there is a need for a customized sentiment analysis tool for the SE domain. On this goal, we manually labeled 2000 review comments to build a training dataset and used our dataset to evaluate seven popular sentiment analysis tools. The poor performances of the existing sentiment analysis tools motivated us to build SentiCR, a sentiment analysis tool especially designed for code review comments. We evaluated SentiCR using one hundred 10-fold cross-validations of eight supervised learning algorithms. We found a model, trained using the Gradient Boosting Tree (GBT) algorithm, providing the highest mean accuracy (83%), the highest mean precision (67.8%), and the highest mean recall (58.4%) in identifying negative review comments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SentiCR:用于代码审查交互的定制情感分析工具
为分析社交媒体文本或产品评论而开发的情感分析工具在软件工程(SE)数据集上表现不佳。由于先前的研究发现开发人员在各种SE活动中表达情感,因此需要为SE领域定制情感分析工具。为了实现这一目标,我们手动标记了2000条评论来构建一个训练数据集,并使用我们的数据集来评估七种流行的情感分析工具。现有情感分析工具的糟糕表现促使我们构建SentiCR,这是一个专门为代码审查评论设计的情感分析工具。我们使用8种监督学习算法的100次10倍交叉验证来评估SentiCR。我们发现了一个使用梯度增强树(GBT)算法训练的模型,在识别负面评论方面提供了最高的平均准确率(83%)、最高的平均精度(67.8%)和最高的平均召回率(58.4%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TiQi: A natural language interface for querying software project data A comprehensive study on real world concurrency bugs in Node.js Managing software evolution through semantic history slicing Software performance self-adaptation through efficient model predictive control Privacy-aware data-intensive applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1