Gender effect cannonicalization for Bangla ASR

Md. Asfak-Ur-Rahman, Mohammed Rokibul Alam Kotwal, Foyzul Hassan, S. Ahmmed, M. N. Huda
{"title":"Gender effect cannonicalization for Bangla ASR","authors":"Md. Asfak-Ur-Rahman, Mohammed Rokibul Alam Kotwal, Foyzul Hassan, S. Ahmmed, M. N. Huda","doi":"10.1109/ICCITECHN.2012.6509701","DOIUrl":null,"url":null,"abstract":"This paper presents a Bangla (widely used as Bengali) automatic speech recognition system (ASR) by suppressing gender effects. Gender characteristic plays an important role on the performance of ASR. If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In the proposed method, we have designed a new ASR incorporating the Local Features (LFs) instead of standard mel frequency cepstral coefficients (MFCCs) as an acoustic feature for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In the experiments on Bangla speech database prepared by us, the proposed system has achieved a significant improvement of word correct rates (WCRs), word accuracies (WAs) and sentence correct rates (SCRs) in comparison with the method that incorporates Standard MFCCs.","PeriodicalId":127060,"journal":{"name":"2012 15th International Conference on Computer and Information Technology (ICCIT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2012.6509701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a Bangla (widely used as Bengali) automatic speech recognition system (ASR) by suppressing gender effects. Gender characteristic plays an important role on the performance of ASR. If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In the proposed method, we have designed a new ASR incorporating the Local Features (LFs) instead of standard mel frequency cepstral coefficients (MFCCs) as an acoustic feature for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In the experiments on Bangla speech database prepared by us, the proposed system has achieved a significant improvement of word correct rates (WCRs), word accuracies (WAs) and sentence correct rates (SCRs) in comparison with the method that incorporates Standard MFCCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
孟加拉ASR的性别效应规范化
提出了一种抑制性别影响的孟加拉语自动语音识别系统(ASR)。性别特征对ASR的表现起着重要作用。如果存在一个抑制过程,可以抑制由性别因素导致的类别间声学似然差异的减少,则可以实现一个鲁棒的ASR系统。在提出的方法中,我们设计了一个新的ASR,通过抑制性别效应,将局部特征(LFs)代替标准mel频率倒谱系数(MFCCs)作为孟加拉语的声学特征,该ASR嵌入了三个基于hmm的分类器,分别用于对应的男性、女性和性别无关(GI)特征。在我们准备的孟加拉语语音数据库的实验中,该系统在单词正确率(wcr)、单词正确率(WAs)和句子正确率(SCRs)方面都比采用标准mfccc的方法有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise reduction algorithm for LS channel estimation in OFDM system Composite pattern matching in time series Android mobile application: Remote monitoring of blood pressure Affective mapping of EEG during executive function tasks Distributed k-dominant skyline queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1