Attention-driven Spatial Transformer Network for Abnormality Detection in Chest X-Ray Images

Joana Rocha, Sofia Cardoso Pereira, J. Pedrosa, A. Campilho, A. Mendonça
{"title":"Attention-driven Spatial Transformer Network for Abnormality Detection in Chest X-Ray Images","authors":"Joana Rocha, Sofia Cardoso Pereira, J. Pedrosa, A. Campilho, A. Mendonça","doi":"10.1109/CBMS55023.2022.00051","DOIUrl":null,"url":null,"abstract":"Backed by more powerful computational resources and optimized training routines, deep learning models have attained unprecedented performance in extracting information from chest X-ray data. Preceding other tasks, an automated abnormality detection stage can be useful to prioritize certain exams and enable a more efficient clinical workflow. However, the presence of image artifacts such as lettering often generates a harmful bias in the classifier, leading to an increase of false positive results. Consequently, health care would benefit from a system that selects the thoracic region of interest prior to deciding whether an image is possibly pathologic. The current work tack-les this binary classification exercise using an attention-driven and spatially unsupervised Spatial Transformer Network (STN). The results indicate that the STN achieves similar results to using YOLO-cropped images, with fewer computational expenses and without the need for localization labels. More specifically, the system is able to distinguish between normal and abnormal CheXpert Images with a mean AUC of 84.22%.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Backed by more powerful computational resources and optimized training routines, deep learning models have attained unprecedented performance in extracting information from chest X-ray data. Preceding other tasks, an automated abnormality detection stage can be useful to prioritize certain exams and enable a more efficient clinical workflow. However, the presence of image artifacts such as lettering often generates a harmful bias in the classifier, leading to an increase of false positive results. Consequently, health care would benefit from a system that selects the thoracic region of interest prior to deciding whether an image is possibly pathologic. The current work tack-les this binary classification exercise using an attention-driven and spatially unsupervised Spatial Transformer Network (STN). The results indicate that the STN achieves similar results to using YOLO-cropped images, with fewer computational expenses and without the need for localization labels. More specifically, the system is able to distinguish between normal and abnormal CheXpert Images with a mean AUC of 84.22%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于胸部x线图像异常检测的注意力驱动空间变压器网络
在更强大的计算资源和优化的训练例程的支持下,深度学习模型在从胸部x射线数据中提取信息方面取得了前所未有的性能。在其他任务之前,自动异常检测阶段可以帮助确定某些检查的优先级,并实现更有效的临床工作流程。然而,图像伪影(如刻字)的存在往往会在分类器中产生有害的偏差,导致假阳性结果的增加。因此,医疗保健将受益于一个系统,选择感兴趣的胸部区域之前,决定是否可能是病理性的图像。目前的工作使用一个注意力驱动和空间无监督的空间变压器网络(STN)来解决这种二元分类练习。结果表明,STN获得了与使用yolo裁剪图像相似的结果,计算费用更少,不需要定位标签。更具体地说,该系统能够区分正常和异常CheXpert图像,平均AUC为84.22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1