Neural Network Research Using Particle Swarm Optimization

Yahui Wang, Zhifeng Xia, Yifeng Huo
{"title":"Neural Network Research Using Particle Swarm Optimization","authors":"Yahui Wang, Zhifeng Xia, Yifeng Huo","doi":"10.1109/ICICIS.2011.106","DOIUrl":null,"url":null,"abstract":"In view of the artificial neural network weights training problem, this paper proposed a method to optimize the network's structure parameters and regularization coefficient using two-layer Particle Swarm Optimization (PSO). This algorithm was applied to train Adaline network. Compared with fixed regularization coefficient method and Sliding Mode Variable Structure optimization method, the result showed that it had the advantages of high precision and strong ability of generalization.","PeriodicalId":255291,"journal":{"name":"2011 International Conference on Internet Computing and Information Services","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Internet Computing and Information Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS.2011.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In view of the artificial neural network weights training problem, this paper proposed a method to optimize the network's structure parameters and regularization coefficient using two-layer Particle Swarm Optimization (PSO). This algorithm was applied to train Adaline network. Compared with fixed regularization coefficient method and Sliding Mode Variable Structure optimization method, the result showed that it had the advantages of high precision and strong ability of generalization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化的神经网络研究
针对人工神经网络权值训练问题,提出了一种利用双层粒子群算法优化网络结构参数和正则化系数的方法。将该算法应用于Adaline网络的训练。结果表明,该方法与固定正则系数法和滑模变结构优化法相比,具有精度高、泛化能力强的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Telephone Clients Management System with Short Messages The Analysis on the Function of Risk Management in Construction Enterprises Development Test Case Prioritization Technique Based on Genetic Algorithm A Model to Create Graeco Latin Square Using Genetic Algorithm Perceptual System of the Dangerous Goods in Transit Escort Based on WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1