GPU implementation of an audio fingerprints similarity search algorithm

Chahid Ouali, P. Dumouchel, Vishwa Gupta
{"title":"GPU implementation of an audio fingerprints similarity search algorithm","authors":"Chahid Ouali, P. Dumouchel, Vishwa Gupta","doi":"10.1109/CBMI.2015.7153625","DOIUrl":null,"url":null,"abstract":"This paper describes a parallel implementation of a promising similarity search algorithm for an audio fingerprinting system. Efficient parallel implementation on a GPU accelerates the search on a dataset containing over 61 million audio fingerprints. The similarity between two fingerprints is defined as the intersection of their elements. We evaluate GPU implementations of two intersection algorithms for this dataset. We show that intelligent use of the GPU memory spaces (shared memory in particular) that maximizes the number of concurrent threads has a significant impact on the overall compute time when using fingerprints of varying dimensions. With simple modifications we obtain up to 4 times better GPU performance when using GPU memory to maximize concurrent threads. Compared to the CPU only implementations, the proposed GPU implementation reduces run times by up to 150 times for one intersection algorithm and by up to 379 times for the other intersection algorithm.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes a parallel implementation of a promising similarity search algorithm for an audio fingerprinting system. Efficient parallel implementation on a GPU accelerates the search on a dataset containing over 61 million audio fingerprints. The similarity between two fingerprints is defined as the intersection of their elements. We evaluate GPU implementations of two intersection algorithms for this dataset. We show that intelligent use of the GPU memory spaces (shared memory in particular) that maximizes the number of concurrent threads has a significant impact on the overall compute time when using fingerprints of varying dimensions. With simple modifications we obtain up to 4 times better GPU performance when using GPU memory to maximize concurrent threads. Compared to the CPU only implementations, the proposed GPU implementation reduces run times by up to 150 times for one intersection algorithm and by up to 379 times for the other intersection algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU实现的一个音频指纹相似度搜索算法
本文描述了一种用于音频指纹识别系统的相似度搜索算法的并行实现。在GPU上的高效并行实现加速了对包含超过6100万个音频指纹的数据集的搜索。两个指纹之间的相似性被定义为它们元素的交集。我们评估了该数据集的两种交集算法的GPU实现。我们表明,在使用不同维度的指纹时,智能地使用GPU内存空间(特别是共享内存)来最大化并发线程的数量会对总体计算时间产生重大影响。通过简单的修改,当使用GPU内存最大化并发线程时,我们获得了高达4倍的GPU性能。与仅使用CPU的实现相比,所提出的GPU实现将一个交集算法的运行时间减少了150倍,另一个交集算法的运行时间减少了379倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of dissimilarity measures for 3D object retrieval with application to multi-feature retrieval A factorized model for multiple SVM and multi-label classification for large scale multimedia indexing On the use of statistical semantics for metadata-based social image retrieval Automatic detection of repetitive actions in a video Hierarchical clustering pseudo-relevance feedback for social image search result diversification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1