Control theoretic tools for robust decision planning

J. Tierno, A. Khalak
{"title":"Control theoretic tools for robust decision planning","authors":"J. Tierno, A. Khalak","doi":"10.23919/ECC.2007.7068620","DOIUrl":null,"url":null,"abstract":"Continuous planning is emerging as the leading solution to the problem of planning for systems with significant uncertainty. However, continuous planning can yield unexpected poor performance due to the necessary incompleteness of the system models used for planning. In this paper, we show how the ideas of plan repair and discount factors can be formalized, quantified, and extended to develop robust continuous planners. This is achieved without increasing computational complexity or requiring extensive additional modeling.","PeriodicalId":407048,"journal":{"name":"2007 European Control Conference (ECC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2007.7068620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous planning is emerging as the leading solution to the problem of planning for systems with significant uncertainty. However, continuous planning can yield unexpected poor performance due to the necessary incompleteness of the system models used for planning. In this paper, we show how the ideas of plan repair and discount factors can be formalized, quantified, and extended to develop robust continuous planners. This is achieved without increasing computational complexity or requiring extensive additional modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲁棒决策规划的控制理论工具
对于具有重大不确定性的系统的规划问题,连续规划正在成为主要的解决方案。然而,由于用于规划的系统模型的必要的不完整性,持续的规划可能会产生意想不到的低性能。在本文中,我们展示了如何将计划修复和折扣因素的思想形式化,量化和扩展以开发稳健的连续计划。这是在不增加计算复杂性或需要大量额外建模的情况下实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Likelihood estimation of state space models from frequency domain data Output feedback H∞ control of continuous-time infinite Markovian jump linear systems via LMI methods Visual servoing of a parallel robot system Comparison between SOS approach and Slack Variable approach for non-negativity check of polynomial functions: Multiple variable case Integrating Hamiltonian systems defined on the Lie groups SO(4) and SO(1,3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1