{"title":"Exploration of Fine-Grained Parallelism for Load Balancing Eager K-truss on GPU and CPU","authors":"Mark P. Blanco, Tze Meng Low, Kyungjoo Kim","doi":"10.1109/HPEC.2019.8916473","DOIUrl":null,"url":null,"abstract":"In this work we present a performance exploration on Eager K-truss, a linear-algebraic formulation of the K-truss graph algorithm. We address performance issues related to load imbalance of parallel tasks in symmetric, triangular graphs by presenting a fine-grained parallel approach to executing the support computation. This approach also increases available parallelism, making it amenable to GPU execution. We demonstrate our fine-grained parallel approach using implementations in Kokkos and evaluate them on an Intel Skylake CPU and an Nvidia Tesla V100 GPU. Overall, we observe between a 1.261. 48x improvement on the CPU and a 9.97-16.92x improvement on the GPU due to our fine-grained parallel formulation.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
In this work we present a performance exploration on Eager K-truss, a linear-algebraic formulation of the K-truss graph algorithm. We address performance issues related to load imbalance of parallel tasks in symmetric, triangular graphs by presenting a fine-grained parallel approach to executing the support computation. This approach also increases available parallelism, making it amenable to GPU execution. We demonstrate our fine-grained parallel approach using implementations in Kokkos and evaluate them on an Intel Skylake CPU and an Nvidia Tesla V100 GPU. Overall, we observe between a 1.261. 48x improvement on the CPU and a 9.97-16.92x improvement on the GPU due to our fine-grained parallel formulation.