{"title":"Techniques for real-time compression of RS-170 high resolution radar images","authors":"A. D. Aronoff","doi":"10.1109/TCC.1996.561123","DOIUrl":null,"url":null,"abstract":"The article reviews and summarizes the results of a Norden study to evaluate real-time JPEG and wavelet compression of the RS-170 images taken from the display of the APG-76 high resolution SAR multimode radar system and transmitted to the ground. The significant advantages of this compression are twofold: the ability to retain large quantities of flight test images at better compression rates than that provided by the lossless GIF format; and the ability to transmit the images in near-real time from the ground station to a home base over standard telephone lines or even over a cellular phone. We have investigated several techniques, considered in the literature to be at or near the state of the art, for lossy compression of APG-76 radar images captured on the ground. We have achieved up to 15:1 in JPEG compression rates without significant picture degradation, if the images are first de-noised. If the pictures are not de-noised, then an 8:1 compression rate can be achieved with little degradation, but at 15:1, JPEG does degrade the images. Although in 1995 we could find no wavelet technique that bettered JPEG, we recently acquired a wavelet implementation that, at 15:1 compression, measured nearly 30 dB in peak signal to noise ratio (PSNR), and was 1.6 dB better than JPEG. This represents a long step towards the 3 dB PSNR improvement required to achieve 2:1 compression improvement over JPEG.","PeriodicalId":398935,"journal":{"name":"Proceedings of the 1996 Tactical Communications Conference. Ensuring Joint Force Superiority in the Information Age","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1996 Tactical Communications Conference. Ensuring Joint Force Superiority in the Information Age","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCC.1996.561123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The article reviews and summarizes the results of a Norden study to evaluate real-time JPEG and wavelet compression of the RS-170 images taken from the display of the APG-76 high resolution SAR multimode radar system and transmitted to the ground. The significant advantages of this compression are twofold: the ability to retain large quantities of flight test images at better compression rates than that provided by the lossless GIF format; and the ability to transmit the images in near-real time from the ground station to a home base over standard telephone lines or even over a cellular phone. We have investigated several techniques, considered in the literature to be at or near the state of the art, for lossy compression of APG-76 radar images captured on the ground. We have achieved up to 15:1 in JPEG compression rates without significant picture degradation, if the images are first de-noised. If the pictures are not de-noised, then an 8:1 compression rate can be achieved with little degradation, but at 15:1, JPEG does degrade the images. Although in 1995 we could find no wavelet technique that bettered JPEG, we recently acquired a wavelet implementation that, at 15:1 compression, measured nearly 30 dB in peak signal to noise ratio (PSNR), and was 1.6 dB better than JPEG. This represents a long step towards the 3 dB PSNR improvement required to achieve 2:1 compression improvement over JPEG.