Wastewater treatment sensor fault detection using RBF neural network with set membership estimation

Binbin Chi, Longhang Guo
{"title":"Wastewater treatment sensor fault detection using RBF neural network with set membership estimation","authors":"Binbin Chi, Longhang Guo","doi":"10.1109/CCDC.2019.8832519","DOIUrl":null,"url":null,"abstract":"There are many sensors used to monitor the quality of the effluent during the wastewater treatment process. So the normal monitoring of the sensor is critical to wastewater treatment. In this article, the proposed sensor fault diagnosis method is based on fault diagnosis of interval prediction which using RBF neural network with set membership estimation. After some input and output data of the WWTP are obtain, an interval containing the actual output of the system without a fault can be easily predicted. If the sensor measured is out of the predicted interval, it can be determined that a fault has occurred. This paper also establishes two independent interval diagnosis models to further make sure whether the senor is faulty or the system is faulty. The results demonstrate that the proposed sensor fault diagnosis method is effective and useful.","PeriodicalId":254705,"journal":{"name":"2019 Chinese Control And Decision Conference (CCDC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2019.8832519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There are many sensors used to monitor the quality of the effluent during the wastewater treatment process. So the normal monitoring of the sensor is critical to wastewater treatment. In this article, the proposed sensor fault diagnosis method is based on fault diagnosis of interval prediction which using RBF neural network with set membership estimation. After some input and output data of the WWTP are obtain, an interval containing the actual output of the system without a fault can be easily predicted. If the sensor measured is out of the predicted interval, it can be determined that a fault has occurred. This paper also establishes two independent interval diagnosis models to further make sure whether the senor is faulty or the system is faulty. The results demonstrate that the proposed sensor fault diagnosis method is effective and useful.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集隶属度估计的RBF神经网络的污水处理传感器故障检测
在污水处理过程中,有许多传感器用于监测流出物的质量。因此,传感器的正常监测对污水处理至关重要。本文提出了基于区间预测故障诊断的传感器故障诊断方法,该方法采用集隶属度估计的RBF神经网络进行故障诊断。在获得WWTP的一些输入和输出数据后,可以很容易地预测一个包含系统无故障实际输出的区间。如果测量到的传感器超出了预测间隔,则可以确定发生了故障。本文还建立了两个独立的区间诊断模型,进一步确定是传感器故障还是系统故障。结果表明,所提出的传感器故障诊断方法是有效和实用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Delayed state synchronization of homogeneous discrete-time multi-agent systems in the presence of unknown communication delays Road Garbage Cleaning Device Based on ZigBee Gateway and Image Recognition A New Switching Nonlinear Extended State Observer L2 String Stability of Heterogeneous Platoon under Disturbances and Information Delays Finite-Horizon Adaptive Dynamic Programming for Collaborative Target Tracking in Energy Harvesting Wireless Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1