Dynamic hand gesture recognition for human-robot and inter-robot communication

Muhammad R. Abid, Philippe E. Meszaros, Ricardo F. D. Silva, E. Petriu
{"title":"Dynamic hand gesture recognition for human-robot and inter-robot communication","authors":"Muhammad R. Abid, Philippe E. Meszaros, Ricardo F. D. Silva, E. Petriu","doi":"10.1109/CIVEMSA.2014.6841431","DOIUrl":null,"url":null,"abstract":"This paper discusses inter-robot and human-robot communication by bare hand dynamic gestures. We use a Bag-of-Features and a local part model approach for bare hand dynamic hand gesture recognition from video. We used dense sampling to extract local 3D multiscale whole-part features. We adopted three dimensional histograms of a gradient orientation (3D HOG) descriptor to represent features. The K-means++ method was applied to cluster the visual words. Dynamic hand gesture classification was completed by using a Bag-of-features (BOF) and non-linear support vector machine (SVM) method. A BOF does not track the order of events. To counter the unordered events of the BOF approach, we used a multiscale local part model to preserve temporal context. Initial experimental results on the newly collected complex dataset show a higher level of recognition. We used the same above mentioned approach for inter-robot communication by using two sample hand models.","PeriodicalId":228132,"journal":{"name":"2014 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2014.6841431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper discusses inter-robot and human-robot communication by bare hand dynamic gestures. We use a Bag-of-Features and a local part model approach for bare hand dynamic hand gesture recognition from video. We used dense sampling to extract local 3D multiscale whole-part features. We adopted three dimensional histograms of a gradient orientation (3D HOG) descriptor to represent features. The K-means++ method was applied to cluster the visual words. Dynamic hand gesture classification was completed by using a Bag-of-features (BOF) and non-linear support vector machine (SVM) method. A BOF does not track the order of events. To counter the unordered events of the BOF approach, we used a multiscale local part model to preserve temporal context. Initial experimental results on the newly collected complex dataset show a higher level of recognition. We used the same above mentioned approach for inter-robot communication by using two sample hand models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人机动态手势识别与机器人间通信
本文讨论了通过徒手动态手势实现的机器人间和人机通信。我们使用特征袋和局部部分模型方法对视频中的徒手动态手势进行识别。采用密集采样方法提取局部三维多尺度整体特征。我们采用梯度方向的三维直方图(3D HOG)描述符来表示特征。采用k -means++方法对视觉词进行聚类。采用特征袋(BOF)和非线性支持向量机(SVM)方法完成动态手势分类。BOF不跟踪事件的顺序。为了应对BOF方法的无序事件,我们使用了一个多尺度局部部分模型来保留时间上下文。在新采集的复杂数据集上的初步实验结果显示出较高的识别水平。我们通过使用两个样本手模型,对机器人之间的通信使用了相同的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of torque motor systems with PID controllers tuned by Bacterial Foraging Optimization algorithms Virtual calibration environment for a-priori estimation of measurement uncertainty ACO-based media content adaptation for e-learning environments Unsupervised machine learning via Hidden Markov Models for accurate clustering of plant stress levels based on imaged chlorophyll fluorescence profiles & their rate of change in time A security model for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1