Multi-Scale Subgraph Contrastive Learning

Yanbei Liu, Yu Zhao, Xiao Wang, Lei Geng, Zhitao Xiao
{"title":"Multi-Scale Subgraph Contrastive Learning","authors":"Yanbei Liu, Yu Zhao, Xiao Wang, Lei Geng, Zhitao Xiao","doi":"10.24963/ijcai.2023/246","DOIUrl":null,"url":null,"abstract":"Graph-level contrastive learning, aiming to learn the representations for each graph by contrasting two augmented graphs, has attracted considerable attention. Previous studies usually simply assume that a graph and its augmented graph as a positive pair, otherwise as a negative pair. However, it is well known that graph structure is always complex and multi-scale, which gives rise to a fundamental question: after graph augmentation, will the previous assumption still hold in reality? By an experimental analysis, we discover the semantic information of an augmented graph structure may be not consistent as original graph structure, and whether two augmented graphs are positive or negative pairs is highly related with the multi-scale structures. Based on this finding, we propose a multi-scale subgraph contrastive learning architecture which is able to characterize the fine-grained semantic information. Specifically, we generate global and local views at different scales based on subgraph sampling, and construct multiple contrastive relationships according to their semantic associations to provide richer self-supervised signals. Extensive experiments and parametric analyzes on eight graph classification real-world datasets well demonstrate the effectiveness of the proposed method.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graph-level contrastive learning, aiming to learn the representations for each graph by contrasting two augmented graphs, has attracted considerable attention. Previous studies usually simply assume that a graph and its augmented graph as a positive pair, otherwise as a negative pair. However, it is well known that graph structure is always complex and multi-scale, which gives rise to a fundamental question: after graph augmentation, will the previous assumption still hold in reality? By an experimental analysis, we discover the semantic information of an augmented graph structure may be not consistent as original graph structure, and whether two augmented graphs are positive or negative pairs is highly related with the multi-scale structures. Based on this finding, we propose a multi-scale subgraph contrastive learning architecture which is able to characterize the fine-grained semantic information. Specifically, we generate global and local views at different scales based on subgraph sampling, and construct multiple contrastive relationships according to their semantic associations to provide richer self-supervised signals. Extensive experiments and parametric analyzes on eight graph classification real-world datasets well demonstrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多尺度子图对比学习
图级对比学习旨在通过对比两个增广图来学习每个图的表示,已经引起了人们的广泛关注。以往的研究通常简单地假设一个图及其增广图为正对,否则为负对。然而,众所周知,图的结构总是复杂和多尺度的,这就产生了一个基本的问题:在图增广之后,前面的假设在现实中是否仍然成立?通过实验分析,我们发现增广图结构的语义信息可能与原图结构不一致,两个增广图是正对还是负对与多尺度结构高度相关。基于这一发现,我们提出了一种能够表征细粒度语义信息的多尺度子图对比学习架构。具体而言,我们基于子图采样生成不同尺度的全局和局部视图,并根据它们的语义关联构建多个对比关系,以提供更丰富的自监督信号。在8个图分类真实数据集上的大量实验和参数分析很好地证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Formal Verification of Neuro-symbolic Multi-agent Systems RuleMatch: Matching Abstract Rules for Semi-supervised Learning of Human Standard Intelligence Tests Computing (1+epsilon)-Approximate Degeneracy in Sublinear Time AI and Decision Support for Sustainable Socio-Ecosystems Contrastive Learning and Reward Smoothing for Deep Portfolio Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1