Identification of hydraulic turbine governor system based on improved unified PSO algorithm

Jian Xiao, Jian-zhong Zhou, Pangao Kou, Xiaoyuan Zhang, Xianguo Wu, Mu Li
{"title":"Identification of hydraulic turbine governor system based on improved unified PSO algorithm","authors":"Jian Xiao, Jian-zhong Zhou, Pangao Kou, Xiaoyuan Zhang, Xianguo Wu, Mu Li","doi":"10.1109/ICCIAUTOM.2011.6183933","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel evolutionary algorithm-based approach to identification of hydraulic turbine governor system (HTGS). A new variant of particle swarm optimization (PSO) technique named unified PSO (UPSO) is employed and improved to search for optimal parameters of HTGS by minimizing errors between the model's evaluated outputs and the actual ones. The performance of the improved unified PSO (IUPSO) is compared with standard PSO and UPSO algorithms tested via numerical simulation. Identification results aptly show that the IUPSO algorithm has the advantage of convergence capability and solution quality and it provides a new way for parameter identification of hydraulic turbine governor system.","PeriodicalId":177039,"journal":{"name":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6183933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a novel evolutionary algorithm-based approach to identification of hydraulic turbine governor system (HTGS). A new variant of particle swarm optimization (PSO) technique named unified PSO (UPSO) is employed and improved to search for optimal parameters of HTGS by minimizing errors between the model's evaluated outputs and the actual ones. The performance of the improved unified PSO (IUPSO) is compared with standard PSO and UPSO algorithms tested via numerical simulation. Identification results aptly show that the IUPSO algorithm has the advantage of convergence capability and solution quality and it provides a new way for parameter identification of hydraulic turbine governor system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进统一粒子群算法的水轮机调速器系统辨识
本文提出了一种基于进化算法的水轮机调速器辨识方法。提出了一种新的粒子群优化算法,即统一粒子群优化算法(UPSO),并对其进行了改进,通过最小化模型评估输出与实际输出之间的误差来搜索HTGS的最优参数。将改进的统一粒子群算法(IUPSO)与标准粒子群算法和UPSO算法进行了性能比较。辨识结果表明,IUPSO算法具有较好的收敛能力和求解质量,为水轮机调速器系统参数辨识提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dynamic scheduling parallel test system with CVI A research of algorithm based on probability weighted fuzzy association rules Design of assembly line of diesel engine factory based on RFID technology Application of genetic algorithm in computer aided design A new method of parameters determined in image recognition by PCNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1