Classification, Segmentation and Chronological Prediction of Cinematic Sound

Pedro Silva
{"title":"Classification, Segmentation and Chronological Prediction of Cinematic Sound","authors":"Pedro Silva","doi":"10.1109/ICMLA.2012.172","DOIUrl":null,"url":null,"abstract":"This paper presents work done on classification, segmentation and chronological prediction of cinematic sound employing support vector machines (SVM) with sequential minimal optimization (SMO). Speech, music, environmental sound and silence, plus all pair wise combinations excluding silence, are considered as classes. A model considering simple adjacency rules and probabilistic output from logistic regression is used for segmenting fixed-length parts into auditory scenes. Evaluation of the proposed methods on a 44-film dataset against k-nearest neighbor, Naive Bayes and standard SVM classifiers shows superior results of the SMO classifier on all performance metrics. Subsequently, we propose sample size optimizations to the building of similar datasets. Finally, we use meta-features built from classification as descriptors in a chronological model for predicting the period of production of a given soundtrack. A decision table classifier is able to estimate the year of production of an unknown soundtrack with a mean absolute error of approximately five years.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents work done on classification, segmentation and chronological prediction of cinematic sound employing support vector machines (SVM) with sequential minimal optimization (SMO). Speech, music, environmental sound and silence, plus all pair wise combinations excluding silence, are considered as classes. A model considering simple adjacency rules and probabilistic output from logistic regression is used for segmenting fixed-length parts into auditory scenes. Evaluation of the proposed methods on a 44-film dataset against k-nearest neighbor, Naive Bayes and standard SVM classifiers shows superior results of the SMO classifier on all performance metrics. Subsequently, we propose sample size optimizations to the building of similar datasets. Finally, we use meta-features built from classification as descriptors in a chronological model for predicting the period of production of a given soundtrack. A decision table classifier is able to estimate the year of production of an unknown soundtrack with a mean absolute error of approximately five years.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电影声音的分类、分割和时间预测
本文介绍了基于序列最小优化(SMO)的支持向量机(SVM)在电影声音分类、分割和时间预测方面所做的工作。语音、音乐、环境声和静音,加上除静音外的所有配对组合,被视为类。该模型考虑了简单邻接规则和逻辑回归的概率输出,用于将固定长度的部分分割成听觉场景。在一个44部电影的数据集上,用k近邻、朴素贝叶斯和标准SVM分类器对所提出的方法进行了评估,结果表明SMO分类器在所有性能指标上都有优越的结果。随后,我们提出了样本大小优化,以建立类似的数据集。最后,我们使用从分类中构建的元特征作为时间顺序模型中的描述符,用于预测给定配乐的制作周期。决策表分类器能够估计未知配乐的制作年份,平均绝对误差约为5年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1