Tracking Ground Targets with Road Constraint Using a Gaussian Mixture Road-Labeled PHD Filter

Jihong Zheng, Jinming Min, He He
{"title":"Tracking Ground Targets with Road Constraint Using a Gaussian Mixture Road-Labeled PHD Filter","authors":"Jihong Zheng, Jinming Min, He He","doi":"10.1145/3457682.3457738","DOIUrl":null,"url":null,"abstract":"The general focus of this paper is the improvement of state-of-the-art Bayesian tracking filters specialized to the domain of ground moving target tracking to obtain high-quality track information by incorporation of road-map information into a Gaussian mixture probability hypothesis density (GM-PHD) filtering scheme. In this paper, we propose a road-labeled GM-PHD (GM-RL-PHD) filter for ground targets with road-segment constrained dynamics and the recursive equations of the filter is derived. The proposed filter is validated with a ground target tracking example. The simulation results show that the proposed algorithm can improve the performance of ground target tracking algorithm by fusing road map information.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The general focus of this paper is the improvement of state-of-the-art Bayesian tracking filters specialized to the domain of ground moving target tracking to obtain high-quality track information by incorporation of road-map information into a Gaussian mixture probability hypothesis density (GM-PHD) filtering scheme. In this paper, we propose a road-labeled GM-PHD (GM-RL-PHD) filter for ground targets with road-segment constrained dynamics and the recursive equations of the filter is derived. The proposed filter is validated with a ground target tracking example. The simulation results show that the proposed algorithm can improve the performance of ground target tracking algorithm by fusing road map information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯混合道路标记PHD滤波器的道路约束地面目标跟踪
本文的总体重点是改进最先进的贝叶斯跟踪滤波器,专门用于地面运动目标跟踪领域,通过将路线图信息纳入高斯混合概率假设密度(GM-PHD)滤波方案,以获得高质量的跟踪信息。本文提出了一种道路标记GM-PHD (GM-RL-PHD)滤波器,并推导了该滤波器的递推方程。通过地面目标跟踪实例验证了该滤波器的有效性。仿真结果表明,该算法通过融合道路地图信息,提高了地面目标跟踪算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corpus Construction and Entity Recognition for the Field of Industrial Robot Fault Diagnosis GCN2-NAA: Two-stage Graph Convolutional Networks with Node-Aware Attention for Joint Entity and Relation Extraction A Practical Indoor and Outdoor Seamless Navigation System Based on Electronic Map and Geomagnetism SC-DGCN: Sentiment Classification Based on Densely Connected Graph Convolutional Network Bird Songs Recognition Based on Ensemble Extreme Learning Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1