Environment Estimation with Dynamic Grid Maps and Self-Localizing Tracklets

A. Vatavu, Nils Rexin, Simon Appel, Tobias Berling, Suresh Govindachar, Gunther Krehl, Janis Peukert, Manuel Schier, O. Schwindt, Jakob Siegel, Ch. Zalidis, Timo Rehfeld, Dominik Nuss, M. Maile, Sven Zimmermann, K. Dietmayer, A. Gern
{"title":"Environment Estimation with Dynamic Grid Maps and Self-Localizing Tracklets","authors":"A. Vatavu, Nils Rexin, Simon Appel, Tobias Berling, Suresh Govindachar, Gunther Krehl, Janis Peukert, Manuel Schier, O. Schwindt, Jakob Siegel, Ch. Zalidis, Timo Rehfeld, Dominik Nuss, M. Maile, Sven Zimmermann, K. Dietmayer, A. Gern","doi":"10.1109/ITSC.2018.8569993","DOIUrl":null,"url":null,"abstract":"Dynamic environment representation is an important and demanding topic in the field of autonomous driving. One of the generic ways to estimate the surrounding world of an intelligent vehicle is to use dynamic grid maps. However, there are still several unsolved challenges in the grid-based tracking solutions like the ability to converge faster and providing a more efficient way to fuse multi-sensorial information. In this work, we address both of these challenges as a single probabilistic estimator. First, we treat the grid map estimation process as a multi-channel tracking mechanism. In particular, we use a particle filter based solution to integrate both the occupancy and semantic grids. Second, we adapt the idea of simultaneous grid cell tracking and object shape estimation into the grid map domain and propose “self-localizing tracklets”, which are individual particle filter based estimators that are used for two main tasks: stabilizing the position estimation accuracy of dynamic cells with respect to the object boundary, and estimating a better object shape. The presented concepts offer an improved representation flexibility and a faster algorithm convergence.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"340 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Dynamic environment representation is an important and demanding topic in the field of autonomous driving. One of the generic ways to estimate the surrounding world of an intelligent vehicle is to use dynamic grid maps. However, there are still several unsolved challenges in the grid-based tracking solutions like the ability to converge faster and providing a more efficient way to fuse multi-sensorial information. In this work, we address both of these challenges as a single probabilistic estimator. First, we treat the grid map estimation process as a multi-channel tracking mechanism. In particular, we use a particle filter based solution to integrate both the occupancy and semantic grids. Second, we adapt the idea of simultaneous grid cell tracking and object shape estimation into the grid map domain and propose “self-localizing tracklets”, which are individual particle filter based estimators that are used for two main tasks: stabilizing the position estimation accuracy of dynamic cells with respect to the object boundary, and estimating a better object shape. The presented concepts offer an improved representation flexibility and a faster algorithm convergence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态网格地图和自定位轨道的环境估计
动态环境表征是自动驾驶领域的一个重要课题。估计智能汽车周围环境的通用方法之一是使用动态网格地图。然而,在基于网格的跟踪解决方案中仍然存在一些未解决的挑战,例如更快收敛的能力以及提供更有效的融合多感官信息的方法。在这项工作中,我们将这两个挑战作为一个单一的概率估计器来解决。首先,我们将网格图估计过程视为一种多通道跟踪机制。特别是,我们使用基于粒子滤波的解决方案来整合占用网格和语义网格。其次,我们将网格单元跟踪和目标形状估计同时进行的思想引入网格地图领域,提出了“自定位轨道”,这是一种基于单个粒子滤波的估计器,主要用于两个任务:稳定动态单元相对于目标边界的位置估计精度,以及估计更好的目标形状。所提出的概念提供了改进的表示灵活性和更快的算法收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of Small Satellites and Connected Vehicles for Large-Scale Traffic Monitoring in Road Network Applications of train routing selection methods for real-time railway traffic management To Merge Early or Late: Analysis of Traffic Flow and Energy Impact in a Reduced Lane Scenario Future Mobility Sensing: An Intelligent Mobility Data Collection and Visualization Platform Large Scale Performance Assessment of the Lighthill-Whitham-Richards Model on a Smart Motorway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1