Resistance Strategy of Power Cyber-Physical System under Large-Scale and Complex Faults

Bo Wang, Zhixiong Zhang, J. Wang, Chuangxin Guo, Jie Hao
{"title":"Resistance Strategy of Power Cyber-Physical System under Large-Scale and Complex Faults","authors":"Bo Wang, Zhixiong Zhang, J. Wang, Chuangxin Guo, Jie Hao","doi":"10.1109/icgea54406.2022.9792119","DOIUrl":null,"url":null,"abstract":"In recent years, with the occurrence of climate change and various extreme events, the research on the resistance of physical information systems to large-scale complex faults is of great significance. Propose a power information system to deal with complex faults in extreme weather, establish an anti-interference framework, construct a regional anti-interference strategy based on regional load output matching and topological connectivity, and propose branch active power adjustment methods to reduce disasters. In order to resist the risk of system instability caused by overrun of branch power and phase disconnection, the improved IEEE33 node test system simulation shows that this strategy can effectively reduce the harm of large-scale and complex faults.","PeriodicalId":151236,"journal":{"name":"2022 6th International Conference on Green Energy and Applications (ICGEA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Green Energy and Applications (ICGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icgea54406.2022.9792119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, with the occurrence of climate change and various extreme events, the research on the resistance of physical information systems to large-scale complex faults is of great significance. Propose a power information system to deal with complex faults in extreme weather, establish an anti-interference framework, construct a regional anti-interference strategy based on regional load output matching and topological connectivity, and propose branch active power adjustment methods to reduce disasters. In order to resist the risk of system instability caused by overrun of branch power and phase disconnection, the improved IEEE33 node test system simulation shows that this strategy can effectively reduce the harm of large-scale and complex faults.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模复杂故障下电力信息物理系统的抵抗策略
近年来,随着气候变化和各种极端事件的发生,物理信息系统对大规模复杂断层的抵抗研究具有重要意义。提出了应对极端天气复杂故障的电力信息系统,建立了抗干扰框架,构建了基于区域负荷输出匹配和拓扑连通性的区域抗干扰策略,提出了减少灾害的支路有功调节方法。为了抵御支路功率超限和断相引起的系统不稳定风险,改进的IEEE33节点测试系统仿真表明,该策略可以有效降低大规模复杂故障的危害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying Main Factors of Wind Power Generation Based on Principal Component Regression: A Case Study of Xiamen Modeling and Numerical Analysis of Harvesting Atmospheric Water Using Copper Chloride Design Optimization of Integrated Renewables and Energy Storage for Commercial Buildings A Preliminary Techno-Economic and Environmental Performance Analysis of Using Second-Life EV Batteries in an Industrial Application Research on Adaptive Proportional Coefficient Current Limiting Control Strategy for Hybrid MMC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1