EM Algorithm and Stochastic Control in Economics

ERN: Monopoly Pub Date : 2016-11-06 DOI:10.2139/ssrn.2865124
S. Kou, X. Peng, Xingbo Xu
{"title":"EM Algorithm and Stochastic Control in Economics","authors":"S. Kou, X. Peng, Xingbo Xu","doi":"10.2139/ssrn.2865124","DOIUrl":null,"url":null,"abstract":"Generalising the idea of the classical EM algorithm that is widely used for computing maximum likelihood estimates, we propose an EM-Control (EM-C) algorithm for solving multi-period finite time horizon stochastic control problems. The new algorithm sequentially updates the control policies in each time period using Monte Carlo simulation in a forward-backward manner; in other words, the algorithm goes forward in simulation and backward in optimization in each iteration. Similar to the EM algorithm, the EM-C algorithm has the monotonicity of performance improvement in each iteration, leading to good convergence properties. We demonstrate the effectiveness of the algorithm by solving stochastic control problems in the monopoly pricing of perishable assets and in the study of real business cycle.","PeriodicalId":142139,"journal":{"name":"ERN: Monopoly","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Monopoly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2865124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Generalising the idea of the classical EM algorithm that is widely used for computing maximum likelihood estimates, we propose an EM-Control (EM-C) algorithm for solving multi-period finite time horizon stochastic control problems. The new algorithm sequentially updates the control policies in each time period using Monte Carlo simulation in a forward-backward manner; in other words, the algorithm goes forward in simulation and backward in optimization in each iteration. Similar to the EM algorithm, the EM-C algorithm has the monotonicity of performance improvement in each iteration, leading to good convergence properties. We demonstrate the effectiveness of the algorithm by solving stochastic control problems in the monopoly pricing of perishable assets and in the study of real business cycle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经济学中的EM算法与随机控制
推广了广泛用于计算极大似然估计的经典EM算法的思想,我们提出了一种求解多周期有限时间范围随机控制问题的EM- c算法。新算法采用蒙特卡罗模拟,以正向-反向的方式依次更新每个时间段的控制策略;换句话说,算法在每次迭代中向前模拟,向后优化。与EM算法相似,EM- c算法在每次迭代中具有性能改进的单调性,具有良好的收敛性。通过求解易逝资产垄断定价和实际经济周期研究中的随机控制问题,证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Collective Agreement is Not Inherently Anti Competitive in Japan: Trade Unions, Self-Employed Workers and the Antimonopoly Act The Cost and Benefit of Dynamic Pricing Does Local Competition and Firm Market Power Affect Investment Adviser Misconduct? Monopoly Pricing, Optimal Randomization and Resale Divide and Conquer in Two-Sided Markets: A Potential-Game Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1