{"title":"Fine-Grained Visual Comparisons with Local Learning","authors":"Aron Yu, K. Grauman","doi":"10.1109/CVPR.2014.32","DOIUrl":null,"url":null,"abstract":"Given two images, we want to predict which exhibits a particular visual attribute more than the other-even when the two images are quite similar. Existing relative attribute methods rely on global ranking functions; yet rarely will the visual cues relevant to a comparison be constant for all data, nor will humans' perception of the attribute necessarily permit a global ordering. To address these issues, we propose a local learning approach for fine-grained visual comparisons. Given a novel pair of images, we learn a local ranking model on the fly, using only analogous training comparisons. We show how to identify these analogous pairs using learned metrics. With results on three challenging datasets-including a large newly curated dataset for fine-grained comparisons-our method outperforms stateof-the-art methods for relative attribute prediction.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"458","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 458
Abstract
Given two images, we want to predict which exhibits a particular visual attribute more than the other-even when the two images are quite similar. Existing relative attribute methods rely on global ranking functions; yet rarely will the visual cues relevant to a comparison be constant for all data, nor will humans' perception of the attribute necessarily permit a global ordering. To address these issues, we propose a local learning approach for fine-grained visual comparisons. Given a novel pair of images, we learn a local ranking model on the fly, using only analogous training comparisons. We show how to identify these analogous pairs using learned metrics. With results on three challenging datasets-including a large newly curated dataset for fine-grained comparisons-our method outperforms stateof-the-art methods for relative attribute prediction.