Modeling Taiwanese POS Tagging Using Statistical Methods and Mandarin Training Data

Un-Gian Iunn, Jia-hung Tai, K. Lau, Cheng-Yan Kao, Keh-Jiann Chen
{"title":"Modeling Taiwanese POS Tagging Using Statistical Methods and Mandarin Training Data","authors":"Un-Gian Iunn, Jia-hung Tai, K. Lau, Cheng-Yan Kao, Keh-Jiann Chen","doi":"10.30019/IJCLCLP.200909.0001","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a POS tagging method for Taiwan Southern Min. We use the more than 62,000 entries of the Taiwanese-Mandarin dictionary and 10 million words of Mandarin training data to tag Taiwanese. The literary written Taiwanese corpora have both Romanized script and Han-Romanization mixed script, and include prose, novels, and dramas. We follow the tagset drawn up by CKIP. We developed a word alignment checker to assist with the word alignment for the two scripts. It searches the Taiwanese-Mandarin dictionary to find corresponding Mandarin candidate words, selects the most suitable Mandarin word using an HMM probabilistic model from the Mandarin training data, and tags the word using an MEMM classifier. We achieve an accuracy rate of 91.6% on Taiwanese POS tagging work, and we analyze the errors. We also discover some preliminary Taiwanese training data.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.200909.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we introduce a POS tagging method for Taiwan Southern Min. We use the more than 62,000 entries of the Taiwanese-Mandarin dictionary and 10 million words of Mandarin training data to tag Taiwanese. The literary written Taiwanese corpora have both Romanized script and Han-Romanization mixed script, and include prose, novels, and dramas. We follow the tagset drawn up by CKIP. We developed a word alignment checker to assist with the word alignment for the two scripts. It searches the Taiwanese-Mandarin dictionary to find corresponding Mandarin candidate words, selects the most suitable Mandarin word using an HMM probabilistic model from the Mandarin training data, and tags the word using an MEMM classifier. We achieve an accuracy rate of 91.6% on Taiwanese POS tagging work, and we analyze the errors. We also discover some preliminary Taiwanese training data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于统计方法和普通话训练数据的台湾词性标注建模
本文介绍了一种台湾南民语的词性标注方法。我们使用台语-普通话字典中超过62,000条的条目和1000万字的普通话训练数据来标注台湾人。台湾的文学语料库既有罗马化文字,也有汉罗马化混合文字,包括散文、小说和戏剧。我们遵循cip制定的标签集。我们开发了一个单词对齐检查器来协助两个脚本的单词对齐。在台语-普通话词典中搜索相应的普通话候选词,利用HMM概率模型从普通话训练数据中选择最合适的普通话词,并使用MEMM分类器对词进行标记。我们对台湾词类标注工作的准确率达到91.6%,并对错误进行了分析。我们还发现了一些初步的台湾训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Cold Start Personalized Language Model Using Social Network Information Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars TQDL: Integrated Models for Cross-Language Document Retrieval Evaluation of TTS Systems in Intelligibility and Comprehension Tasks: a Case Study of HTS-2008 and Multisyn Synthesizers Effects of Combining Bilingual and Collocational Information on Translation of English and Chinese Verb-Noun Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1