Predicting Mortality Rate based on Comprehensive Features of Intensive Care Unit Patients

Jagan Moahan Reddy Danda, Kumar Priyansh, H. Shahriar, Hisham M. Haddad, A. Cuzzocrea, Nazmus Sakib
{"title":"Predicting Mortality Rate based on Comprehensive Features of Intensive Care Unit Patients","authors":"Jagan Moahan Reddy Danda, Kumar Priyansh, H. Shahriar, Hisham M. Haddad, A. Cuzzocrea, Nazmus Sakib","doi":"10.1109/COMPSAC54236.2022.00222","DOIUrl":null,"url":null,"abstract":"Predictive analytics is gaining momentum in health-care since the adoption of electronic health record (EHR) system in hospitals. In particular, machine learning models are built using the critical care EHR data and the information provided during the ICU admissions to predict the mortality of patients admitted in ICU. As per the MIMIC-IV dataset, the survival rate of patients admitted in ICU is found to be 89.76%. This paper proposes a hybrid prediction technique that uses Random Forest and XGBoost for predicting the mortality rate. The proposed techniques performed well in predicting mortality rate despite the class imbalance problem of the dataset. The experiments conducted on MIMIC-IV dataset yields prediction accuracy of 89.72%.","PeriodicalId":330838,"journal":{"name":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC54236.2022.00222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Predictive analytics is gaining momentum in health-care since the adoption of electronic health record (EHR) system in hospitals. In particular, machine learning models are built using the critical care EHR data and the information provided during the ICU admissions to predict the mortality of patients admitted in ICU. As per the MIMIC-IV dataset, the survival rate of patients admitted in ICU is found to be 89.76%. This paper proposes a hybrid prediction technique that uses Random Forest and XGBoost for predicting the mortality rate. The proposed techniques performed well in predicting mortality rate despite the class imbalance problem of the dataset. The experiments conducted on MIMIC-IV dataset yields prediction accuracy of 89.72%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于重症监护病房患者综合特征的死亡率预测
自从医院采用电子健康记录(EHR)系统以来,预测分析在医疗保健领域的势头日益强劲。特别是,使用重症监护EHR数据和ICU入院期间提供的信息建立机器学习模型,以预测ICU入院患者的死亡率。根据MIMIC-IV数据集,ICU住院患者的生存率为89.76%。本文提出了一种使用随机森林和XGBoost的混合预测技术来预测死亡率。尽管数据集存在类别不平衡问题,但所提出的技术在预测死亡率方面表现良好。在MIMIC-IV数据集上进行的实验,预测准确率达到89.72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Category-Aware App Permission Recommendation based on Sparse Linear Model Early Detection of At-Risk Students in a Calculus Course Apple-YOLO: A Novel Mobile Terminal Detector Based on YOLOv5 for Early Apple Leaf Diseases A Safe Route Recommendation Method Based on Driver Characteristics from Telematics Data GSDNet: An Anti-interference Cochlea Segmentation Model Based on GAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1