{"title":"Recognizing human activities from multi-modal sensors","authors":"S. Chen, Y. Huang","doi":"10.1109/ISI.2009.5137308","DOIUrl":null,"url":null,"abstract":"This paper describes a method of detecting and monitoring human activities which are extremely useful for understanding human behaviors and recognizing human interactions in a social network. By taking advantage of current wireless sensor network technologies, physical activities can be recognized through classifying multi-modal sensors data. The result shows that high recognition accuracy on a dataset of 6 daily activities of one carrier can be achieved by using suitable classifiers.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper describes a method of detecting and monitoring human activities which are extremely useful for understanding human behaviors and recognizing human interactions in a social network. By taking advantage of current wireless sensor network technologies, physical activities can be recognized through classifying multi-modal sensors data. The result shows that high recognition accuracy on a dataset of 6 daily activities of one carrier can be achieved by using suitable classifiers.