Knowledge extraction from reinforcement learning

R. Sun
{"title":"Knowledge extraction from reinforcement learning","authors":"R. Sun","doi":"10.1109/IJCNN.1999.833476","DOIUrl":null,"url":null,"abstract":"This paper deals with knowledge extraction from reinforcement learners. It addresses two approaches towards knowledge extraction: the extraction of explicit, symbolic rules front neural reinforcement learners; and the extraction of complete plans from such learners. The advantages of such knowledge extraction include: the improvement of learning (especially with the rule extraction approach); and the improvement of the usability of results of learning.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.833476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper deals with knowledge extraction from reinforcement learners. It addresses two approaches towards knowledge extraction: the extraction of explicit, symbolic rules front neural reinforcement learners; and the extraction of complete plans from such learners. The advantages of such knowledge extraction include: the improvement of learning (especially with the rule extraction approach); and the improvement of the usability of results of learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从强化学习中提取知识
本文主要研究强化学习器的知识提取问题。它解决了两种知识提取的方法:在神经强化学习器前提取明确的符号规则;以及从这些学习者中提取完整的计划。这种知识提取的优点包括:改进了学习(特别是使用规则提取方法);提高了学习结果的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1