A Continuous Representation Of Switching Linear Dynamic Systems For Accurate Tracking

Parisa Karimi, H. Naumer, F. Kamalabadi
{"title":"A Continuous Representation Of Switching Linear Dynamic Systems For Accurate Tracking","authors":"Parisa Karimi, H. Naumer, F. Kamalabadi","doi":"10.1109/SSP53291.2023.10207936","DOIUrl":null,"url":null,"abstract":"We propose a method for tracking linear representations of a nonlinear dynamic system with time-varying parameters based on a continuous representation of its switching linear dynamic system (SLDS) model. Given approximate linear representations for a finite set of unknown intrinsic parameters of the dynamics, a combination of autoencoder-based dimensionality reduction and cubic curve-fitting are applied to learn the continuous manifold of dynamics embedded in the evolution operator. This representation enables a significant reduction of the squared Frobenius norm of error in maximum likelihood (ML) system identification relative to that of the original SLDS model. Numerical experiments also verify this result.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a method for tracking linear representations of a nonlinear dynamic system with time-varying parameters based on a continuous representation of its switching linear dynamic system (SLDS) model. Given approximate linear representations for a finite set of unknown intrinsic parameters of the dynamics, a combination of autoencoder-based dimensionality reduction and cubic curve-fitting are applied to learn the continuous manifold of dynamics embedded in the evolution operator. This representation enables a significant reduction of the squared Frobenius norm of error in maximum likelihood (ML) system identification relative to that of the original SLDS model. Numerical experiments also verify this result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于精确跟踪的切换线性动态系统的连续表示
本文提出了一种基于开关线性动态系统(SLDS)模型的连续表示来跟踪时变参数非线性动态系统的线性表示的方法。给定一组未知动力学参数的近似线性表示,结合基于自编码器的降维和三次曲线拟合来学习嵌入在演化算子中的动力学连续流形。与原始SLDS模型相比,这种表示可以显著减少最大似然(ML)系统识别中的Frobenius误差的平方。数值实验也验证了这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1