{"title":"Null/Optimum Point Optimization for Indoor Passive Radar Motion Sensing","authors":"A. B. Carman, Changzhi Li","doi":"10.1109/RadarConf2351548.2023.10149758","DOIUrl":null,"url":null,"abstract":"Indoor passive radar has gained traction as a method for measuring small-amplitude motions without requiring a cooperative signal to be transmitted by the sensor. Ubiquitous signals such as Wi-Fi and Bluetooth may be used as illuminators of opportunity in order to measure the motion of various targets. Both the direct, unmodulated signal as well as the Doppler-shifted signal are received at the radar and are used for down-conversion to baseband. Since there is no cooperative local oscillator used in passive radar, it is not currently possible to effectively extract both the $I$ and $Q$ channel data making null-point detection a returning problem. In this work, the null-point detection problem is analyzed theoretically to develop a simulation model for passive radar sensing. Using this model, an in-depth analysis is undertaken in order to determine the effectiveness of methods such as channel selection, frequency tuning, or multi-band/multi-static sensing in removing or mitigating the null-point detection problem. The results demonstrate that despite the presence of the null-point issue, it is possible to reduce its impact on motion detection and optimize the detection sensitivity.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Indoor passive radar has gained traction as a method for measuring small-amplitude motions without requiring a cooperative signal to be transmitted by the sensor. Ubiquitous signals such as Wi-Fi and Bluetooth may be used as illuminators of opportunity in order to measure the motion of various targets. Both the direct, unmodulated signal as well as the Doppler-shifted signal are received at the radar and are used for down-conversion to baseband. Since there is no cooperative local oscillator used in passive radar, it is not currently possible to effectively extract both the $I$ and $Q$ channel data making null-point detection a returning problem. In this work, the null-point detection problem is analyzed theoretically to develop a simulation model for passive radar sensing. Using this model, an in-depth analysis is undertaken in order to determine the effectiveness of methods such as channel selection, frequency tuning, or multi-band/multi-static sensing in removing or mitigating the null-point detection problem. The results demonstrate that despite the presence of the null-point issue, it is possible to reduce its impact on motion detection and optimize the detection sensitivity.