{"title":"The application of wavelet energy entropy and LS-SVM to classify power quality disturbances","authors":"Ming Zhang, Kaicheng Li","doi":"10.1109/ICWAPR.2009.5207434","DOIUrl":null,"url":null,"abstract":"The power quality (PQ) signals are traditionally analyzed in the time-domain by skilled engineers. However, PQ disturbances may not always be obvious in the original time-domain signal. Fourier analysis transforms signals into frequency domain, but has the disadvantage that time characteristics will become unobvious. Wavelet analysis, which provides both time and frequency information, can overcome this limitation. In this paper, PQ signals were examined. There were two stages in analyzing PQ signals: feature extraction and disturbances classification. To extract features from PQ signals, wavelet packet transform (WPT) was first applied and feature vectors of relative wavelet log-energy entropy were constructed. Least square support vector machines (LS-SVM) was applied to these feature vectors to classify PQ disturbances. Simulation results show that the proposed method possesses high recognition rate, so it is suitable to the monitoring and classifying system for PQ disturbances.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The power quality (PQ) signals are traditionally analyzed in the time-domain by skilled engineers. However, PQ disturbances may not always be obvious in the original time-domain signal. Fourier analysis transforms signals into frequency domain, but has the disadvantage that time characteristics will become unobvious. Wavelet analysis, which provides both time and frequency information, can overcome this limitation. In this paper, PQ signals were examined. There were two stages in analyzing PQ signals: feature extraction and disturbances classification. To extract features from PQ signals, wavelet packet transform (WPT) was first applied and feature vectors of relative wavelet log-energy entropy were constructed. Least square support vector machines (LS-SVM) was applied to these feature vectors to classify PQ disturbances. Simulation results show that the proposed method possesses high recognition rate, so it is suitable to the monitoring and classifying system for PQ disturbances.