Memetic particle swarm optimization algorithm for DOA estimation under multipath environment

J. Hung
{"title":"Memetic particle swarm optimization algorithm for DOA estimation under multipath environment","authors":"J. Hung","doi":"10.1109/CCSSE.2016.7784348","DOIUrl":null,"url":null,"abstract":"This paper introduces a new combine of Memetic particle swarm optimum (MPSO) and beam-space oblique projection operator method suitable for dealing with direction of arrival (DOA) under a multipath environment. Generally, oblique projection operator is applied to project measurements onto a low-rank subspace along a direction that is oblique to the subspace and it enhance signals while nulling interferences. However, the method will be biased under a multipath environment. Therefore, we have proposed the beam-space oblique projection operator by MPSO scheme for DOA under a multipath environment. The MPSO that incorporates local search techniques applies in the particle swarm optimization (PSO) and the procedure as follow: first, we used the PSO to estimate the signal DOA by oblique projection operator method. Second, the personal best position of the swarm to set up beam-space oblique projection operator and using gradient-based techniques to enhance exact. The MPSO uses beam-space rebuilding oblique projection operator for local search techniques to address the issue of reduce multipath effect and increase find exact DOA estimation. Finally, numerical example with different a multipath environment is presented to illustrate the design procedure and to confirm the performance of the proposed method.","PeriodicalId":136809,"journal":{"name":"2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCSSE.2016.7784348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a new combine of Memetic particle swarm optimum (MPSO) and beam-space oblique projection operator method suitable for dealing with direction of arrival (DOA) under a multipath environment. Generally, oblique projection operator is applied to project measurements onto a low-rank subspace along a direction that is oblique to the subspace and it enhance signals while nulling interferences. However, the method will be biased under a multipath environment. Therefore, we have proposed the beam-space oblique projection operator by MPSO scheme for DOA under a multipath environment. The MPSO that incorporates local search techniques applies in the particle swarm optimization (PSO) and the procedure as follow: first, we used the PSO to estimate the signal DOA by oblique projection operator method. Second, the personal best position of the swarm to set up beam-space oblique projection operator and using gradient-based techniques to enhance exact. The MPSO uses beam-space rebuilding oblique projection operator for local search techniques to address the issue of reduce multipath effect and increase find exact DOA estimation. Finally, numerical example with different a multipath environment is presented to illustrate the design procedure and to confirm the performance of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模因粒子群算法的多路径DOA估计
本文提出了一种将模因粒子群优化算法与波束空间斜投影算子相结合的多径环境下的到达方向求解方法。一般采用斜投影算子将测量值沿与子空间倾斜的方向投影到低秩子空间上,在消除干扰的同时增强信号。然而,该方法在多路径环境下会产生偏差。因此,我们提出了基于MPSO的波束空间斜投影算子,用于多径环境下的DOA定位。将融合局部搜索技术的粒子群优化算法应用于粒子群优化算法中,具体步骤如下:首先,利用粒子群优化算法利用斜投影算子估计信号的DOA;其次,在群的个人最佳位置设置波束空间斜投影算子,并利用基于梯度的技术提高精度。该算法采用波束空间重建斜投影算子进行局部搜索,有效地降低了多径效应,提高了精确DOA估计。最后,通过不同多径环境下的数值算例说明了该方法的设计过程,并验证了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy logic controller design for intelligent air-conditioning system Design of multi-point wireless multifunction monitoring system based on Android Link weights-based ANT colony routing algorithm for wireless sensor networks Study on control method of activated sludge sewage treatment system Adaptive sliding mode control for a vehicle steer-by-wire system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1