J. Motwani, Yaosuo Xue, Arash Nazari, D. Dong, I. Cvetkovic, D. Boroyevich
{"title":"Analysis of Inter Converter Interactions using Harmonic State Space Modeling","authors":"J. Motwani, Yaosuo Xue, Arash Nazari, D. Dong, I. Cvetkovic, D. Boroyevich","doi":"10.1109/eGRID52793.2021.9662130","DOIUrl":null,"url":null,"abstract":"Power converters have become a key participant within the modern grid, facilitating the grid's interaction with renewable energy sources and various loads, among others. These converters can also interact with each other, creating harmonics that were previously absent in the grid. While some previous research studies have focused on inter-converter interactions, not much focus has been on the role of pulse width modulators in these inter-converter interactions. This paper focuses on the issue and builds upon harmonic state-space modeling (HSS) to observe inter-converter harmonic interactions. A new modulator model is developed, and its implementation within HSS modeling to observe harmonic coupling between multiple inverters is highlighted. A simulation testbench is developed, and to verify the advantages and limitations of the proposed modeling approach, it is compared with two other traditional modeling methods: namely, average and switching models. The proposed method is shown to be significantly more accurate and informative than conventional average modeling methods and has considerably lower computation costs and simulation time than detailed switching models. The results are verified using extensive simulations on MATLAB.","PeriodicalId":198321,"journal":{"name":"2021 6th IEEE Workshop on the Electronic Grid (eGRID)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th IEEE Workshop on the Electronic Grid (eGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eGRID52793.2021.9662130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Power converters have become a key participant within the modern grid, facilitating the grid's interaction with renewable energy sources and various loads, among others. These converters can also interact with each other, creating harmonics that were previously absent in the grid. While some previous research studies have focused on inter-converter interactions, not much focus has been on the role of pulse width modulators in these inter-converter interactions. This paper focuses on the issue and builds upon harmonic state-space modeling (HSS) to observe inter-converter harmonic interactions. A new modulator model is developed, and its implementation within HSS modeling to observe harmonic coupling between multiple inverters is highlighted. A simulation testbench is developed, and to verify the advantages and limitations of the proposed modeling approach, it is compared with two other traditional modeling methods: namely, average and switching models. The proposed method is shown to be significantly more accurate and informative than conventional average modeling methods and has considerably lower computation costs and simulation time than detailed switching models. The results are verified using extensive simulations on MATLAB.