{"title":"Radial basis function neural network-based control for uncertain nonlinear systems with unknown dead-zone input","authors":"M. Shahriari-kahkeshi","doi":"10.1109/ICCIAUTOM.2017.8258644","DOIUrl":null,"url":null,"abstract":"In this work, an adaptive dynamic surface control scheme is studied for a class of nonlinear systems with unknown functions and unknown non-symmetric dead-zone nonlinearity. The unknown asymmetric dead-zone is described as a combination of a linear term and a disturbance-like term. Radial basis function neural networks (RBFNNs) are used in the online approximation of unknown functions and disturbance-like term of the dead-zone model and adaptive laws are designed to adjust the weights of network. Using the RBFNN-based model, the dead-zone model and the dynamic surface control (DSC) technique, the adaptive control scheme is developed for uncertain nonlinear systems with dead-zone nonlinearity. The proposed scheme eliminates the ‘explosion of complexity’ problem and presents a singular-free adaptive DSC control scheme. Also, it does not require any knowledge about unknown terms and the dead-zone nonlinearity. Simulation results are provided to demonstrate the performance and effectiveness of the proposed approach.","PeriodicalId":197207,"journal":{"name":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2017.8258644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, an adaptive dynamic surface control scheme is studied for a class of nonlinear systems with unknown functions and unknown non-symmetric dead-zone nonlinearity. The unknown asymmetric dead-zone is described as a combination of a linear term and a disturbance-like term. Radial basis function neural networks (RBFNNs) are used in the online approximation of unknown functions and disturbance-like term of the dead-zone model and adaptive laws are designed to adjust the weights of network. Using the RBFNN-based model, the dead-zone model and the dynamic surface control (DSC) technique, the adaptive control scheme is developed for uncertain nonlinear systems with dead-zone nonlinearity. The proposed scheme eliminates the ‘explosion of complexity’ problem and presents a singular-free adaptive DSC control scheme. Also, it does not require any knowledge about unknown terms and the dead-zone nonlinearity. Simulation results are provided to demonstrate the performance and effectiveness of the proposed approach.