Enhanced correlation coefficient as a refinement of image registration

Stephen, Wen Hwooi Khor, Aznul Qalid Md. Sabri
{"title":"Enhanced correlation coefficient as a refinement of image registration","authors":"Stephen, Wen Hwooi Khor, Aznul Qalid Md. Sabri","doi":"10.1109/ICSIPA.2017.8120609","DOIUrl":null,"url":null,"abstract":"A study of the effectiveness of Enhanced Correlation Coefficient (ECC) on the performance of feature-based image registration approaches is carried out. This investigation determines if ECC improves image registration performance on datasets which test on invariance to scale, rotation and viewpoint change. Five state-of-the-arts methods are considered, namely KAZE, Binary Robust Invariant Scalable Keypoints (BRISK), Oriented FAST and Rotated Brief (ORB), Speeded-Up Robust Features (SURF), and Scale-Invariant Feature Transform (SIFT). Root-mean-squared error of control points is used to evaluate the image registration performance on datasets taken from the Oxford Robotics Database. A global ranking factor is used to rank each method within a dataset. The efficiency of each method is recorded as a guide for selecting a method for a specific application. Results indicate that ECC improves image registration performance in most cases with a small time addition.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"568 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A study of the effectiveness of Enhanced Correlation Coefficient (ECC) on the performance of feature-based image registration approaches is carried out. This investigation determines if ECC improves image registration performance on datasets which test on invariance to scale, rotation and viewpoint change. Five state-of-the-arts methods are considered, namely KAZE, Binary Robust Invariant Scalable Keypoints (BRISK), Oriented FAST and Rotated Brief (ORB), Speeded-Up Robust Features (SURF), and Scale-Invariant Feature Transform (SIFT). Root-mean-squared error of control points is used to evaluate the image registration performance on datasets taken from the Oxford Robotics Database. A global ranking factor is used to rank each method within a dataset. The efficiency of each method is recorded as a guide for selecting a method for a specific application. Results indicate that ECC improves image registration performance in most cases with a small time addition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强的相关系数作为图像配准的细化
研究了增强相关系数(ECC)对基于特征的图像配准方法性能的影响。本研究确定了ECC是否提高了数据集的图像配准性能,这些数据集测试了尺度、旋转和视点变化的不变性。考虑了五种最先进的方法,即KAZE,二进制鲁棒不变可伸缩关键点(BRISK),定向FAST和旋转简短(ORB),加速鲁棒特征(SURF)和尺度不变特征变换(SIFT)。使用控制点的均方根误差来评估来自牛津机器人数据库的数据集的图像配准性能。使用全局排名因子对数据集中的每个方法进行排名。记录每种方法的效率,作为为特定应用选择方法的指南。结果表明,在大多数情况下,ECC可以提高图像配准的性能,并且增加的时间较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1