Effect of Grain Boundary Structure on Weld Decay of Austenitic Stainless Steel (Part 2) : Grain Boundary Structure and Carbide Precipitation in Type 304 Stainless Steel Weld Heat Affected Zone

H. Kokawa, T. Kuwana
{"title":"Effect of Grain Boundary Structure on Weld Decay of Austenitic Stainless Steel (Part 2) : Grain Boundary Structure and Carbide Precipitation in Type 304 Stainless Steel Weld Heat Affected Zone","authors":"H. Kokawa, T. Kuwana","doi":"10.2207/QJJWS.9.264","DOIUrl":null,"url":null,"abstract":"Grain boundary carbide precipitation in weld heat affected zone of type 304 and 304L, austenitic stainless steels was observed using transmission electron microscope to make clear the effects of grain boundary misorientation and structure on carbide precipitation at grain boundaries in stainless steel welds from a crystallographic viewpoint. Grain boundary carbides were detected in grain boundary precipitation region of the 304 steel weld heat affected zone. In that region, some grain boundaries had carbide precipitates, but some were precipitation-free. Kikuchi line analyses showed that grain boundaries with ordered atomic structures had no carbide precipitates. This tendency was valid in 304L steel weld, although grain boundary carbide precipitates were finer in 304L, steel than in 304 steel. These facts have suggested that grain boundary precipitation and corrosion in stainless steel weld heat affected zone depend sensitively on crystallographic character of grain boundary.","PeriodicalId":273687,"journal":{"name":"Transactions of the Japan Welding Society","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Welding Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2207/QJJWS.9.264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Grain boundary carbide precipitation in weld heat affected zone of type 304 and 304L, austenitic stainless steels was observed using transmission electron microscope to make clear the effects of grain boundary misorientation and structure on carbide precipitation at grain boundaries in stainless steel welds from a crystallographic viewpoint. Grain boundary carbides were detected in grain boundary precipitation region of the 304 steel weld heat affected zone. In that region, some grain boundaries had carbide precipitates, but some were precipitation-free. Kikuchi line analyses showed that grain boundaries with ordered atomic structures had no carbide precipitates. This tendency was valid in 304L steel weld, although grain boundary carbide precipitates were finer in 304L, steel than in 304 steel. These facts have suggested that grain boundary precipitation and corrosion in stainless steel weld heat affected zone depend sensitively on crystallographic character of grain boundary.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶界组织对奥氏体不锈钢焊缝衰减的影响(二):304型不锈钢焊缝热影响区的晶界组织与碳化物析出
采用透射电镜观察了304型和304L型奥氏体不锈钢焊缝热影响区晶界碳化物析出情况,从结晶学角度研究了晶界取向错误和晶界组织对不锈钢焊缝晶界碳化物析出的影响。在304钢焊缝热影响区晶界析出区检测到晶界碳化物。该区域部分晶界有碳化物析出,部分晶界无碳化物析出。菊池线分析表明,具有有序原子结构的晶界无碳化物析出。这种趋势在304L钢的焊缝中也存在,尽管304L钢的晶界碳化物析出物比304钢细。这些事实表明,不锈钢焊缝热影响区晶界的析出和腐蚀与晶界的结晶学特征密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Alloying Elements on the Toughness and Microstructure of HIGH CURRENT DENSITY GAS SHIELDED ARC PROCESS Weld Metals Study on Glass-metal Bonding by Anodic Bonding. Effect of TiC-Cr3C2 Particles Content on Abrasive Wear Resistance of Co-Base Overlay Weld Alloy. Impact Property at Cryogenic Temperature of Candidate Materials for Fusion Reactor and Their Electron Beam Welded Joint Influence of Delta-ferrite on Sensitization of the Austenitic Stainless Steel Weld Metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1