Single Image Dehazing Algorithm Based on Dark Channel Prior and Inverse Image

Xiao Zhou, L. Bai, Chengyou Wang
{"title":"Single Image Dehazing Algorithm Based on Dark Channel Prior and Inverse Image","authors":"Xiao Zhou, L. Bai, Chengyou Wang","doi":"10.5829/ije.2017.30.10a.07","DOIUrl":null,"url":null,"abstract":"The sky regions of foggy image processed by all the existing conventional dehazing methods are degraded by color distortion and severe noise. This paper proposes an improved algorithm which combines dark channel prior and inverse image. We first invert the foggy image, and then estimate the transmission of the inverse image. At last, compared with the non-inversed transmission, the larger values of the transmission are the final transmission. This algorithm tends to refine the medium transmission by adjusting the values of pixels in the bright region to meet the hypothesis of dark channel prior. The method is viable to eliminate color distortion of the dehazed image.","PeriodicalId":416886,"journal":{"name":"International journal of engineering. Transactions A: basics","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of engineering. Transactions A: basics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2017.30.10a.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The sky regions of foggy image processed by all the existing conventional dehazing methods are degraded by color distortion and severe noise. This paper proposes an improved algorithm which combines dark channel prior and inverse image. We first invert the foggy image, and then estimate the transmission of the inverse image. At last, compared with the non-inversed transmission, the larger values of the transmission are the final transmission. This algorithm tends to refine the medium transmission by adjusting the values of pixels in the bright region to meet the hypothesis of dark channel prior. The method is viable to eliminate color distortion of the dehazed image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于暗通道先验和逆图像的单幅图像去雾算法
现有的常规消雾方法处理的雾图像天空区域存在颜色失真和严重的噪声。本文提出了一种将暗通道先验图像与逆图像相结合的改进算法。首先对雾天图像进行反演,然后对反演图像的透射率进行估计。最后,与非反向传输相比,传输的较大值为最终传输。该算法倾向于通过调整明亮区域像素的值来细化介质传输,以满足暗通道先验的假设。该方法对于消除去雾图像的色彩失真是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
A New Combination of Robust-possibilistic Mathematical Programming for Resilient Supply Chain Network under Disruptions and Uncertainty: A Real Supply Chain (RESEARCH NOTE) Composite Multi Wall Carbon Nano Tube Polydimethylsiloxane Membrane Bioreactor for Enhanced Bioethanol Production from Broomcorn Seeds Determining of Geotechnical Domain Based on Joint Density and Fault Orientation at Batu Hijau Mine,West Sumbawa-Indonesia (TECHNICAL NOTE) Bi-objective Build-to-order Supply Chain Problem with Customer Utility Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1