Error splitting method for training a built-in neural network storage element with SR-latch functionality

N. Tsaikin
{"title":"Error splitting method for training a built-in neural network storage element with SR-latch functionality","authors":"N. Tsaikin","doi":"10.1109/ET50336.2020.9238330","DOIUrl":null,"url":null,"abstract":"A method for dividing the error when passing through a storage element with SR-latch functionality for embedding in neural networks with one output and two inputs is presented. In the backpropagation method, the error is divided from one output to the two inputs with opposite coefficients. In this way, the element trains the previous neural layers to detect input vectors, which indicate the beginning and the end of statuses to be remembered. The forward and reverse interfaces of the element are defined, respectively for calculating the information signal and the error.","PeriodicalId":178356,"journal":{"name":"2020 XXIX International Scientific Conference Electronics (ET)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XXIX International Scientific Conference Electronics (ET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ET50336.2020.9238330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method for dividing the error when passing through a storage element with SR-latch functionality for embedding in neural networks with one output and two inputs is presented. In the backpropagation method, the error is divided from one output to the two inputs with opposite coefficients. In this way, the element trains the previous neural layers to detect input vectors, which indicate the beginning and the end of statuses to be remembered. The forward and reverse interfaces of the element are defined, respectively for calculating the information signal and the error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
训练具有SR-latch功能的内置神经网络存储单元的错误分割方法
提出了一种用于神经网络单输出双输入嵌入的具有sr锁存功能的存储单元通过误差分割的方法。在反向传播方法中,误差从一个输出分配到两个系数相反的输入。通过这种方式,该元素训练之前的神经层来检测输入向量,输入向量指示要记住的状态的开始和结束。定义了元件的正向接口和反向接口,分别用于计算信息信号和误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Develop Test and Implementation of Low Cost DC Power Data Logger Apply of Design Patterns and Encryption Algorithms in Information Systems Arduino based Open Source Electronic Control Unit for Electric Utility Vehicles Copper Nanowires Filler to Fluxes for Fabrication of Diffusion Soldering Paste [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1