Voronoi-based UAVs Formation Deployment and Reconfiguration using MPC Techniques

T. Chevet, C. Maniu, C. Vlad, Youmin Zhang
{"title":"Voronoi-based UAVs Formation Deployment and Reconfiguration using MPC Techniques","authors":"T. Chevet, C. Maniu, C. Vlad, Youmin Zhang","doi":"10.1109/ICUAS.2018.8453342","DOIUrl":null,"url":null,"abstract":"This paper presents a decentralized Voronoi-based linear model predictive control (MPC) technique for the deployment and reconfiguration of a multi-agent system composed of unmanned aerial vehicles (UAVs) in a bounded area. At each time instant, this area is partitioned into non-overlapping time-varying Voronoi cells associated to each UAV agent. The formation deployment objective is to drive the agents into a static configuration based on the Chebyshev center of each Voronoi cell. The proposed MPC-based formation reconfiguration algorithms allow not only faulty/non-cooperating agents to leave the formation, but also recovered/healthy agents to join in the current formation, while avoiding collisions. Simulation results validate the effectiveness of the proposed control algorithms.","PeriodicalId":246293,"journal":{"name":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2018.8453342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents a decentralized Voronoi-based linear model predictive control (MPC) technique for the deployment and reconfiguration of a multi-agent system composed of unmanned aerial vehicles (UAVs) in a bounded area. At each time instant, this area is partitioned into non-overlapping time-varying Voronoi cells associated to each UAV agent. The formation deployment objective is to drive the agents into a static configuration based on the Chebyshev center of each Voronoi cell. The proposed MPC-based formation reconfiguration algorithms allow not only faulty/non-cooperating agents to leave the formation, but also recovered/healthy agents to join in the current formation, while avoiding collisions. Simulation results validate the effectiveness of the proposed control algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于voronoi的无人机编队部署与MPC重新配置
本文提出了一种基于分散voronoi的线性模型预测控制(MPC)技术,用于在限定区域内由无人机组成的多智能体系统的部署和重构。在每个时刻,该区域被划分为与每个无人机代理相关联的不重叠的时变Voronoi单元。编队部署的目标是基于每个Voronoi单元的Chebyshev中心将代理驱动到静态配置中。提出的基于mpc的地层重构算法不仅允许故障/不合作的agent离开地层,还允许恢复/健康的agent加入当前的地层,同时避免碰撞。仿真结果验证了所提控制算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stabilization and Optimal Trajectory Generation for a Compact Aerial Manipulation System with a Delta-type Parallel Robot Vision-Based Autonomous Landing of a Multi-Copter Unmanned Aerial Vehicle using Reinforcement Learning Nonlinear Flight Control Design for Maneuvering Flight of Quadrotors in High Speed and Large Acceleration Integrated Navigation Based on DME+VOR/INS Under the Integrated Radio Condition Vision-based Integrated Navigation System and Optimal Allocation in Formation Flying
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1