Classification of materials by modal analysis and neural network

M. H. M. A. Tan, F. Mat, I. M. A. Rahim, N. T. Lile, S. Yaacob
{"title":"Classification of materials by modal analysis and neural network","authors":"M. H. M. A. Tan, F. Mat, I. M. A. Rahim, N. T. Lile, S. Yaacob","doi":"10.1109/ICIMU.2011.6122753","DOIUrl":null,"url":null,"abstract":"Modal analysis is the study of dynamic characteristic of structures induced by vibrational excitation. Under modal excitation, three important parameters namely natural frequency, damping ratio and mode shape associated with the structural properties are acquired. These modal parameters are used as the extracted features for classification on artificial neural network. This paper presents an experimental investigation of two different kinds of materials by implementation of modal analysis along with the integration of neural network for materials classification. The experimental modal analysis is done using the LMS instruments and software where Fast Fourier Transform (FFT) and Frequency Response Function (FRF) are used to extract the mentioned modal parameters. The extracted parameters are used as the classification process feature of the neural network. Multi-layer Perceptron (MLP) is used as the mapping model of the network. The technique adopted for the system is the Levenberg-Marquadt (LM) and Scaled Conjugate Gradient (SCG) Backpropagation technique.","PeriodicalId":102808,"journal":{"name":"ICIMU 2011 : Proceedings of the 5th international Conference on Information Technology & Multimedia","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICIMU 2011 : Proceedings of the 5th international Conference on Information Technology & Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2011.6122753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Modal analysis is the study of dynamic characteristic of structures induced by vibrational excitation. Under modal excitation, three important parameters namely natural frequency, damping ratio and mode shape associated with the structural properties are acquired. These modal parameters are used as the extracted features for classification on artificial neural network. This paper presents an experimental investigation of two different kinds of materials by implementation of modal analysis along with the integration of neural network for materials classification. The experimental modal analysis is done using the LMS instruments and software where Fast Fourier Transform (FFT) and Frequency Response Function (FRF) are used to extract the mentioned modal parameters. The extracted parameters are used as the classification process feature of the neural network. Multi-layer Perceptron (MLP) is used as the mapping model of the network. The technique adopted for the system is the Levenberg-Marquadt (LM) and Scaled Conjugate Gradient (SCG) Backpropagation technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模态分析和神经网络的材料分类
模态分析是研究结构在振动激励下的动力特性。在模态激励下,得到了与结构性能相关的固有频率、阻尼比和振型三个重要参数。这些模态参数作为提取的特征在人工神经网络上进行分类。本文对两种不同类型的材料进行了模态分析,并结合神经网络进行了材料分类。利用LMS仪器和软件进行实验模态分析,利用快速傅里叶变换(FFT)和频响函数(FRF)提取上述模态参数。将提取的参数作为神经网络的分类过程特征。采用多层感知器(MLP)作为网络的映射模型。该系统采用Levenberg-Marquadt (LM)和缩放共轭梯度(SCG)反向传播技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EWA: An exemplar-based watermarking attack Application of data mining techniques in customer realationship management for an automobile company An Augmented Reality's framework for mobile PAPR analysis of coded-OFDM system and mitigating its effect with clipping, SLM and PTS Analysing tasks through the sonification application and user intrepretation construction models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1