A novel low-power DLMS adaptive filter with sign-magnitude learning and approximated FIR section

G. Meo, D. Caro, N. Petra, A. Strollo
{"title":"A novel low-power DLMS adaptive filter with sign-magnitude learning and approximated FIR section","authors":"G. Meo, D. Caro, N. Petra, A. Strollo","doi":"10.1109/prime55000.2022.9816770","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approximate implementation for the Delayed Least Mean Square (DLMS) filter, able to improve the power consumption while preserving the learning capabilities. In order to minimize the switching activity, we exploit the magnitude of the error signal to update the filter coefficients. Moreover, the FIR section of the adaptive filter is approximated by using a novel approximate fused multipliers-adder tree, exploiting a partial products cancellation and correction technique. Simulation results show that the convergence properties of the proposed filters are practically unchanged with respect to the original DLMS algorithm. Syntheses in 28 nm technology show a power saving of 53.7% that surpass the state of the art.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a novel approximate implementation for the Delayed Least Mean Square (DLMS) filter, able to improve the power consumption while preserving the learning capabilities. In order to minimize the switching activity, we exploit the magnitude of the error signal to update the filter coefficients. Moreover, the FIR section of the adaptive filter is approximated by using a novel approximate fused multipliers-adder tree, exploiting a partial products cancellation and correction technique. Simulation results show that the convergence properties of the proposed filters are practically unchanged with respect to the original DLMS algorithm. Syntheses in 28 nm technology show a power saving of 53.7% that surpass the state of the art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的低功耗DLMS自适应滤波器,具有信号幅度学习和近似FIR截面
在本文中,我们提出了一种新的延迟最小均方(DLMS)滤波器的近似实现,能够在保持学习能力的同时提高功耗。为了最小化开关活动,我们利用误差信号的大小来更新滤波器系数。此外,采用一种新的近似融合乘法器树来逼近自适应滤波器的FIR部分,利用部分乘积抵消和校正技术。仿真结果表明,与原DLMS算法相比,所提滤波器的收敛性基本不变。28纳米技术的合成显示出53.7%的节电,超过了目前的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Formal Methods to Evaluate Hardware Reliability in the Presence of Soft Errors Leaky Integrate-and-Fire Neuron with a Refractory Period Mechanism for Invariant Spikes Phase-change memory cells characterization in an analog in-memory computing perspective Analysis of Current-Reuse and Split-Voltage Topology for Biomedical Amplifier Arrays Influence of Amplitude and Phase Imbalance on a Y-band Bootstrapped Frequency Doubler using 130-nm SiGe Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1