Assessment of the “Disrupt-O-Meter” model by ordinal multicriteria methods

Luiz Octávio Gavião , Fernando Toledo Ferraz , Gilson Brito Alves Lima , Annibal Parracho Sant’Anna
{"title":"Assessment of the “Disrupt-O-Meter” model by ordinal multicriteria methods","authors":"Luiz Octávio Gavião ,&nbsp;Fernando Toledo Ferraz ,&nbsp;Gilson Brito Alves Lima ,&nbsp;Annibal Parracho Sant’Anna","doi":"10.1016/j.rai.2016.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this article is to explore a potential diagnostic model, called “Disrupt-O-Meter”, about the Christensen's disruptive innovation theory. The diagnostic model was analyzed under multi-criteria decision aid (MCDA) methods. This diagnosis presents a typical data structure of multi-criteria ordinal problems. Different alternatives were evaluated under a set of criteria, using a scale of ordinal preferences. The steps of a MCDA problem were followed. The chosen methods were the Borda, the Condorcet and the Probabilistic Composition of Preferences (CPP). This article used a database from other research, about 3D printing technology startups. The results showed the best discrimination power by the CPP method, revealing the business category with the most disruptive potential, among other alternatives.</p></div>","PeriodicalId":101056,"journal":{"name":"RAI Revista de Administra??o e Inova??o","volume":"13 4","pages":"Pages 305-314"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rai.2016.05.002","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAI Revista de Administra??o e Inova??o","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1809203916310798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The objective of this article is to explore a potential diagnostic model, called “Disrupt-O-Meter”, about the Christensen's disruptive innovation theory. The diagnostic model was analyzed under multi-criteria decision aid (MCDA) methods. This diagnosis presents a typical data structure of multi-criteria ordinal problems. Different alternatives were evaluated under a set of criteria, using a scale of ordinal preferences. The steps of a MCDA problem were followed. The chosen methods were the Borda, the Condorcet and the Probabilistic Composition of Preferences (CPP). This article used a database from other research, about 3D printing technology startups. The results showed the best discrimination power by the CPP method, revealing the business category with the most disruptive potential, among other alternatives.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用有序多准则方法评估“中断- o -仪表”模型
本文的目的是探索一个潜在的诊断模型,称为“破坏- o - meter”,关于克里斯滕森的破坏性创新理论。采用多准则决策辅助(MCDA)方法对诊断模型进行分析。该诊断给出了一个典型的多准则有序问题的数据结构。不同的选择是在一套标准下评估的,使用顺序偏好的尺度。遵循MCDA问题的步骤。选择了Borda、Condorcet和概率组合偏好(Probabilistic Composition of Preferences, CPP)三种方法。本文使用了来自其他数据库的研究,关于3D打印技术的创业公司。结果显示,CPP方法的辨别能力最好,揭示了在其他备选方案中最具颠覆潜力的业务类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Why do small businesses innovate? Relevant factors of innovation in businesses participating in the Local Innovation Agents program in Rondônia (Amazon, Brazil) Product, process, marketing and organizational innovation in industries of the flat knitting sector Battery global value chain and its technological challenges for electric vehicle mobility An analysis of industrial districts and Triple Helix of innovation – a regional development experience in the south of the state of Rio de Janeiro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1