{"title":"Optimization of feedback control inputs for posture control of a six-legged robot","authors":"H. Uchida","doi":"10.13180/clawar.2018.10-12.09.16","DOIUrl":null,"url":null,"abstract":"In this study, an optimization method of feedback control inputs for a posture control of a six-legged robot was developed. The authors had proposed a method to control using an optimum servo system as a posture control method of a six-legged robot. As a problem of this method, because the feedback (FB) gain was switched at the time of switching the swing leg, the control inputs becomes discontinuous and there was a problem that the posture variation increases. After that, FB inputs of the thigh link obtained by optimum servo system were optimized. Then, we design a control system that suppressed the posture variation that occurs during swing leg switching. The effectiveness of the proposed control method was confirmed using a 3D model of a six-legged robot.","PeriodicalId":145851,"journal":{"name":"Robotics Transforming the Future","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics Transforming the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13180/clawar.2018.10-12.09.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, an optimization method of feedback control inputs for a posture control of a six-legged robot was developed. The authors had proposed a method to control using an optimum servo system as a posture control method of a six-legged robot. As a problem of this method, because the feedback (FB) gain was switched at the time of switching the swing leg, the control inputs becomes discontinuous and there was a problem that the posture variation increases. After that, FB inputs of the thigh link obtained by optimum servo system were optimized. Then, we design a control system that suppressed the posture variation that occurs during swing leg switching. The effectiveness of the proposed control method was confirmed using a 3D model of a six-legged robot.