Open/Closed Hand Classification Using Kinect Data

J. M. Teixeira, Bernardo Reis, Samuel Macêdo, J. Kelner
{"title":"Open/Closed Hand Classification Using Kinect Data","authors":"J. M. Teixeira, Bernardo Reis, Samuel Macêdo, J. Kelner","doi":"10.1109/SVR.2012.20","DOIUrl":null,"url":null,"abstract":"This work proposes a study over five different hand gesture classifiers using depth and skeleton data from the Kinect sensor. Evaluations of sensibility, specificity and computational costs are performed for the purpose of choosing which methods are the most adequate. In spite of the low computational complexity of the tested classifiers, the results obtained are of similar quality compared to other complex approaches. All tested classifiers have been gathered in an open-source library for hand classification using the Kinect.","PeriodicalId":319713,"journal":{"name":"2012 14th Symposium on Virtual and Augmented Reality","volume":"133 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 14th Symposium on Virtual and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SVR.2012.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This work proposes a study over five different hand gesture classifiers using depth and skeleton data from the Kinect sensor. Evaluations of sensibility, specificity and computational costs are performed for the purpose of choosing which methods are the most adequate. In spite of the low computational complexity of the tested classifiers, the results obtained are of similar quality compared to other complex approaches. All tested classifiers have been gathered in an open-source library for hand classification using the Kinect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Kinect数据进行开/闭手分类
这项工作提出了对五种不同的手势分类器的研究,使用来自Kinect传感器的深度和骨骼数据。对敏感性、特异性和计算成本进行评估是为了选择最合适的方法。尽管所测试的分类器的计算复杂度较低,但与其他复杂方法相比,所获得的结果质量相似。所有经过测试的分类器都收集在一个开源库中,用于使用Kinect进行手部分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Augmented Reality and Speech Technologies to Help Deaf and Hard of Hearing People Challenges in 3D Reconstruction from Images for Difficult Large-Scale Objects: A Study on the Modeling of Electrical Substations Human Body Motion and Gestures Recognition Based on Checkpoints Subjective Video Quality Assessment in Segmentation for Augmented Reality Applications TrueSight A Pedestrian Navigation System Based in Automatic Landmark Detection and Extraction on Android Smartphone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1