A. Paikan, David Schiebener, Mirko Wächter, T. Asfour, G. Metta, L. Natale
{"title":"Transferring object grasping knowledge and skill across different robotic platforms","authors":"A. Paikan, David Schiebener, Mirko Wächter, T. Asfour, G. Metta, L. Natale","doi":"10.1109/ICAR.2015.7251502","DOIUrl":null,"url":null,"abstract":"This study describes the transfer of object grasping skills between two different humanoid robots with different software frameworks. We realize such a knowledge and skill transfer between the humanoid robots iCub and ARMAR-III. These two robots have different kinematics and are programmed using different middlewares, YARP and ArmarX. We developed a bridge system to allow for the execution of grasping skills of ARMAR-III on iCub. As the embodiment differs, the known feasible grasps for the one robot are not always feasible for the other robot. We propose a reactive correction behavior to detect failure of a grasp during its execution, to correct it until it is successful, and thus adapt the known grasp definition to the new embodiment.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2015.7251502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This study describes the transfer of object grasping skills between two different humanoid robots with different software frameworks. We realize such a knowledge and skill transfer between the humanoid robots iCub and ARMAR-III. These two robots have different kinematics and are programmed using different middlewares, YARP and ArmarX. We developed a bridge system to allow for the execution of grasping skills of ARMAR-III on iCub. As the embodiment differs, the known feasible grasps for the one robot are not always feasible for the other robot. We propose a reactive correction behavior to detect failure of a grasp during its execution, to correct it until it is successful, and thus adapt the known grasp definition to the new embodiment.