Adaptive prediction using local area training

S. Marusic, G. Deng
{"title":"Adaptive prediction using local area training","authors":"S. Marusic, G. Deng","doi":"10.1109/ANZIIS.2001.974103","DOIUrl":null,"url":null,"abstract":"An adaptive prediction technique is proposed which is based on the training of prediction coefficients using a local causal training area. The training technique is applied in conjunction with the recursive LMS (RLMS) algorithm, incorporating feedback of the prediction error to update the predictor coefficients. The local area training is shown to improve the stability of the RLMS algorithm. The ability of the implementation to track nonstationary data is demonstrated through the improved accuracy of predictions. Applied to lossless coding; of images, the proposed technique using RLMS and adaptive arithmetic coding produces results comparable to state of the art techniques.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An adaptive prediction technique is proposed which is based on the training of prediction coefficients using a local causal training area. The training technique is applied in conjunction with the recursive LMS (RLMS) algorithm, incorporating feedback of the prediction error to update the predictor coefficients. The local area training is shown to improve the stability of the RLMS algorithm. The ability of the implementation to track nonstationary data is demonstrated through the improved accuracy of predictions. Applied to lossless coding; of images, the proposed technique using RLMS and adaptive arithmetic coding produces results comparable to state of the art techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部区域训练的自适应预测
提出了一种基于局部因果训练区域对预测系数进行训练的自适应预测技术。该训练技术与递归LMS (RLMS)算法相结合,结合预测误差的反馈来更新预测系数。局部区域训练可以提高RLMS算法的稳定性。通过提高预测的准确性,证明了实现跟踪非平稳数据的能力。应用于无损编码;对于图像,使用RLMS和自适应算法编码的建议技术产生的结果可与最先进的技术相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mammogram JPEG quantisation matrix optimisation for PACS Static image simulation of electronic visual prostheses Ultrasound mediated transfection of HT29 colorectal cancer cells in vitro: preliminary results Gait symmetry quantification during treadmill walking Segmentation of clinical structures for radiotherapy treatment planning: a comparison of two morphological approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1