{"title":"MKE Scheme for the Control of Dynamic Constrained Redundant Robots Based on Discrete-time Neural Network","authors":"Baiyan Liu, Dan Su, Mei Liu, Yang Shi, Shuai Li","doi":"10.1109/DDCLS52934.2021.9455469","DOIUrl":null,"url":null,"abstract":"It is necessary to make physical constraints on the joints for the redundant robot motion control in order to avoid damage. In this paper, a discrete-time neural network model with minimum kinetic energy as the performance index is proposed, which has predominant convergence performance. Then, a solution in robot motion control is studied and further transformed into a dynamic quadratic programming (QP) with equality and inequality constraints. In addition, for solving the formulated QP problem, a continuous-time neural network model is designed by introducing the Lagrange multiplier method, and a discrete-time neural network model is obtained by the Euler forward difference formula. Moreover, the simulations on robot motion control are carried out, and the simulative results further substantiate the superiority, thus extending a solution for motion control of redundant robots with double-bound constraints.","PeriodicalId":325897,"journal":{"name":"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS52934.2021.9455469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is necessary to make physical constraints on the joints for the redundant robot motion control in order to avoid damage. In this paper, a discrete-time neural network model with minimum kinetic energy as the performance index is proposed, which has predominant convergence performance. Then, a solution in robot motion control is studied and further transformed into a dynamic quadratic programming (QP) with equality and inequality constraints. In addition, for solving the formulated QP problem, a continuous-time neural network model is designed by introducing the Lagrange multiplier method, and a discrete-time neural network model is obtained by the Euler forward difference formula. Moreover, the simulations on robot motion control are carried out, and the simulative results further substantiate the superiority, thus extending a solution for motion control of redundant robots with double-bound constraints.