A Non-Linear MIMO System Identification Approach Based on the Multiple Maximal Correlation Technique

K. Chernyshov
{"title":"A Non-Linear MIMO System Identification Approach Based on the Multiple Maximal Correlation Technique","authors":"K. Chernyshov","doi":"10.1109/RusAutoCon52004.2021.9537504","DOIUrl":null,"url":null,"abstract":"Issues are considered that arise when solving problems of identification of stochastic systems and related to the application of nonlinear measures of dependence of random values. An approach to the identification of nonlinear multi-input / multi-output systems is proposed, based on the use of a measure of multiple dependence of the input and output processes of the system under study, the multiple maximal correlation. In the case of single-dimensional input/output systems, this measure of dependence corresponds to the maximum correlation. The approach proposed combines a non-parametric estimation of non-linear transformations of the system input and output vector-valued variables and parametric estimation of the linear system part. Meanwhile, the optimal non-linear transformations are just the ones that provide the maximum of the non-linear multiple correlation between the input and output vector-valued variables.","PeriodicalId":106150,"journal":{"name":"2021 International Russian Automation Conference (RusAutoCon)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon52004.2021.9537504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Issues are considered that arise when solving problems of identification of stochastic systems and related to the application of nonlinear measures of dependence of random values. An approach to the identification of nonlinear multi-input / multi-output systems is proposed, based on the use of a measure of multiple dependence of the input and output processes of the system under study, the multiple maximal correlation. In the case of single-dimensional input/output systems, this measure of dependence corresponds to the maximum correlation. The approach proposed combines a non-parametric estimation of non-linear transformations of the system input and output vector-valued variables and parametric estimation of the linear system part. Meanwhile, the optimal non-linear transformations are just the ones that provide the maximum of the non-linear multiple correlation between the input and output vector-valued variables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多重极大相关技术的非线性MIMO系统辨识方法
在解决随机系统的识别问题以及与随机值依赖的非线性度量的应用有关的问题时,考虑了这些问题。提出了一种识别非线性多输入/多输出系统的方法,该方法基于所研究系统的输入和输出过程的多重依赖度量,即多重最大相关。在单维输入/输出系统的情况下,这种依赖性的度量对应于最大相关性。该方法将系统输入输出向量值变量的非线性变换的非参数估计与线性系统部分的参数估计相结合。同时,最优的非线性变换正是在输入和输出向量值变量之间提供最大的非线性多重相关性的变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Algorithm for Arc Furnace Mode Control with Dynamic Arc Length Correction at Metal Refining Period Part Position Correction During Assembly According to Force and Torque Sensor Signals Formation of a Digital Footprint Based on the Characteristics of Computer Hardware to Identity APCS Users Static Devices to Prevent Unnecessary Disconnections of Gas-Piston Units in Transients Model-Based Architecture for Control System Design with Application of SIMO Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1