Real-time speaker identification system using cepstral features

M. Barik, Susanta Kumar Sarangi, Sushanta Kumar Sahu
{"title":"Real-time speaker identification system using cepstral features","authors":"M. Barik, Susanta Kumar Sarangi, Sushanta Kumar Sahu","doi":"10.1109/CCINTELS.2016.7878207","DOIUrl":null,"url":null,"abstract":"Real-time speaker identification (SI) system is the application of Biometric system where the voice samples are collected in real-time. Due to that contamination of noises in speaker samples are the natural scenario. In this work, we tried to increase the accuracy of real-time SI system. We analysed the SI system by using different feature extraction methods with GMM-ML classifier. We found that MFCC feature extraction method is the best one among other cepstral features in real-time SI system also. We used different scale based feature extraction methods for the evaluation of SI system. We used the database for SI system created in real-time.","PeriodicalId":158982,"journal":{"name":"2016 2nd International Conference on Communication Control and Intelligent Systems (CCIS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Communication Control and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCINTELS.2016.7878207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Real-time speaker identification (SI) system is the application of Biometric system where the voice samples are collected in real-time. Due to that contamination of noises in speaker samples are the natural scenario. In this work, we tried to increase the accuracy of real-time SI system. We analysed the SI system by using different feature extraction methods with GMM-ML classifier. We found that MFCC feature extraction method is the best one among other cepstral features in real-time SI system also. We used different scale based feature extraction methods for the evaluation of SI system. We used the database for SI system created in real-time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于倒谱特征的实时说话人识别系统
实时说话人识别(SI)系统是生物识别系统的应用,实时采集语音样本。由于扬声器样本中的噪声污染是自然的情况。在这项工作中,我们试图提高实时SI系统的准确性。利用GMM-ML分类器,采用不同的特征提取方法对SI系统进行了分析。我们发现MFCC特征提取方法也是实时SI系统中其他倒谱特征提取方法中效果最好的一种。我们使用不同尺度的特征提取方法对SI系统进行评价。我们使用实时创建的SI系统数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
60 Gbps transmission with reduced power and lower frequency in lightwave systems using negative dispersion optical fiber Design, fabrication and evaluation of low density, broadband microwave absorbing composite for X & Ku band Biometric personal identification system using biomedical sensors Automatic age detection based on facial images A 40 nm CMOS V-band VCO with on-chip body bias voltage control technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1