ν-Anomica: A Fast Support Vector Based Novelty Detection Technique

Santanu Das, Kanishka Bhaduri, N. Oza, A. Srivastava
{"title":"ν-Anomica: A Fast Support Vector Based Novelty Detection Technique","authors":"Santanu Das, Kanishka Bhaduri, N. Oza, A. Srivastava","doi":"10.1109/ICDM.2009.42","DOIUrl":null,"url":null,"abstract":"In this paper we propose ν-Anomica, a novel anomaly detection technique that can be trained on huge data sets with much reduced running time compared to the benchmark one-class Support Vector Machines algorithm. In ν-Anomica, the idea is to train the machine such that it can provide a close approximation to the exact decision plane using fewer training points and without losing much of the generalization performance of the classical approach. We have tested the proposed algorithm on a variety of continuous data sets under different conditions. We show that under all test conditions the developed procedure closely preserves the accuracy of standard one- class Support Vector Machines while reducing both the training time and the test time by 5 − 20 times.","PeriodicalId":247645,"journal":{"name":"2009 Ninth IEEE International Conference on Data Mining","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2009.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we propose ν-Anomica, a novel anomaly detection technique that can be trained on huge data sets with much reduced running time compared to the benchmark one-class Support Vector Machines algorithm. In ν-Anomica, the idea is to train the machine such that it can provide a close approximation to the exact decision plane using fewer training points and without losing much of the generalization performance of the classical approach. We have tested the proposed algorithm on a variety of continuous data sets under different conditions. We show that under all test conditions the developed procedure closely preserves the accuracy of standard one- class Support Vector Machines while reducing both the training time and the test time by 5 − 20 times.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
- anomica:一种快速的基于支持向量的新颖性检测技术
在本文中,我们提出了一种新的异常检测技术,与基准的单类支持向量机算法相比,它可以在大量数据集上训练,运行时间大大减少。在ν-Anomica中,其思想是训练机器,使其能够使用更少的训练点提供接近确切决策平面的近似,并且不会失去经典方法的大部分泛化性能。我们已经在不同条件下的各种连续数据集上测试了所提出的算法。我们表明,在所有测试条件下,开发的程序密切地保持了标准的一类支持向量机的准确性,同时减少了5 - 20倍的训练时间和测试时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic Similarity Query on Dimension Incomplete Data Outlier Detection Using Inductive Logic Programming GSML: A Unified Framework for Sparse Metric Learning Naive Bayes Classification of Uncertain Data PEGASUS: A Peta-Scale Graph Mining System Implementation and Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1