Log2Intent

Zhiqiang Tao, Sheng Li, Zhaowen Wang, Chen Fang, Longqi Yang, Handong Zhao, Y. Fu
{"title":"Log2Intent","authors":"Zhiqiang Tao, Sheng Li, Zhaowen Wang, Chen Fang, Longqi Yang, Handong Zhao, Y. Fu","doi":"10.1145/3292500.3330889","DOIUrl":null,"url":null,"abstract":"Modeling user behavior from unstructured software log-trace data is critical in providing personalized service (\\emphe.g., cross-platform recommendation). Existing user modeling approaches cannot well handle the long-term temporal information in log data, or produce semantically meaningful results for interpreting user logs. To address these challenges, we propose a Log2Intent framework for interpretable user modeling in this paper. Log2Intent adopts a deep sequential modeling framework that contains a temporal encoder, a semantic encoder and a log action decoder, and it fully captures the long-term temporal information in user sessions. Moreover, to bridge the semantic gap between log-trace data and human language, a recurrent semantics memory unit (RSMU) is proposed to encode the annotation sentences from an auxiliary software tutorial dataset, and the output of RSMU is fed into the semantic encoder of Log2Intent. Comprehensive experiments on a real-world Photoshop log-trace dataset with an auxiliary Photoshop tutorial dataset demonstrate the effectiveness of the proposed Log2Intent framework over the state-of-the-art log-trace user modeling method in three different tasks, including log annotation retrieval, user interest detection and user next action prediction.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Modeling user behavior from unstructured software log-trace data is critical in providing personalized service (\emphe.g., cross-platform recommendation). Existing user modeling approaches cannot well handle the long-term temporal information in log data, or produce semantically meaningful results for interpreting user logs. To address these challenges, we propose a Log2Intent framework for interpretable user modeling in this paper. Log2Intent adopts a deep sequential modeling framework that contains a temporal encoder, a semantic encoder and a log action decoder, and it fully captures the long-term temporal information in user sessions. Moreover, to bridge the semantic gap between log-trace data and human language, a recurrent semantics memory unit (RSMU) is proposed to encode the annotation sentences from an auxiliary software tutorial dataset, and the output of RSMU is fed into the semantic encoder of Log2Intent. Comprehensive experiments on a real-world Photoshop log-trace dataset with an auxiliary Photoshop tutorial dataset demonstrate the effectiveness of the proposed Log2Intent framework over the state-of-the-art log-trace user modeling method in three different tasks, including log annotation retrieval, user interest detection and user next action prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Log2Intent
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1