Adaptive Neural Network Control of Uncertain Nonlinear Systems in the Presence of Input Saturation

Jing Zhou, M. Er, Yi Zhou
{"title":"Adaptive Neural Network Control of Uncertain Nonlinear Systems in the Presence of Input Saturation","authors":"Jing Zhou, M. Er, Yi Zhou","doi":"10.1109/ICARCV.2006.345187","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new scheme to design adaptive controller for uncertain nonlinear systems in the presence of input saturation. The control design is achieved by using backstepping technique and neural network. Unlike some existing control schemes for systems with input saturation, the developed controller does not require uncertain parameters within a known compact set. Besides showing stability, transient performance is also established and can be adjusted by tuning certain design parameters","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2006.345187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

In this paper, we present a new scheme to design adaptive controller for uncertain nonlinear systems in the presence of input saturation. The control design is achieved by using backstepping technique and neural network. Unlike some existing control schemes for systems with input saturation, the developed controller does not require uncertain parameters within a known compact set. Besides showing stability, transient performance is also established and can be adjusted by tuning certain design parameters
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
输入饱和不确定非线性系统的自适应神经网络控制
针对存在输入饱和的不确定非线性系统,提出了一种新的自适应控制器设计方案。采用反步技术和神经网络实现控制设计。与现有的一些具有输入饱和系统的控制方案不同,所开发的控制器不需要已知紧集中的不确定参数。除了表现出稳定性外,还建立了瞬态性能,并且可以通过调整某些设计参数来调整
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
μ-Interaction Measure for Unstable Systems GestureCam: A Smart Camera for Gesture Recognition and Gesture-Controlled Web Navigation A HHMM-Based Approach for Robust Fall Detection Verifying a User in a Personal Face Space The Effect of Image Resolution on the Performance of a Face Recognition System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1