Study on GSOM model based on interval grey number

Chuanmin Mi, Sifeng Liu, Yan Xu
{"title":"Study on GSOM model based on interval grey number","authors":"Chuanmin Mi, Sifeng Liu, Yan Xu","doi":"10.1109/GSIS.2007.4443478","DOIUrl":null,"url":null,"abstract":"Considered elements of input node and weight vector are interval grey numbers in Self-organizing Feature Map (SOM), normalized these interval grey numbers, defined the interval grey number Euclidean distance, and proposed Grey SOM (GSOM) model which can solve uncertain problems efficiently. In the end, we studied intelligent clustering of commercial bank off-site regulation empirically using this model. The result showed that: compared with traditional SOM model, GSOM is easy for programming, has a strengthened ability of anti-interference and a higher precision of classification.","PeriodicalId":445155,"journal":{"name":"2007 IEEE International Conference on Grey Systems and Intelligent Services","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Grey Systems and Intelligent Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSIS.2007.4443478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Considered elements of input node and weight vector are interval grey numbers in Self-organizing Feature Map (SOM), normalized these interval grey numbers, defined the interval grey number Euclidean distance, and proposed Grey SOM (GSOM) model which can solve uncertain problems efficiently. In the end, we studied intelligent clustering of commercial bank off-site regulation empirically using this model. The result showed that: compared with traditional SOM model, GSOM is easy for programming, has a strengthened ability of anti-interference and a higher precision of classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区间灰数的GSOM模型研究
考虑自组织特征映射(SOM)中输入节点和权向量的元素为区间灰数,将这些区间灰数归一化,定义区间灰数欧氏距离,提出能够有效解决不确定性问题的灰色SOM (GSOM)模型。最后,运用该模型对商业银行场外监管的智能聚类进行了实证研究。结果表明:与传统的SOM模型相比,GSOM模型易于编程,抗干扰能力增强,分类精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research of sludge compost maturity degree modeling method based on classify support vector machine for sewage treatment On the properties of weakening operator Countermeasure and cause analysis on urban construction investment and financing Grey association degree analyses and arrangement of targets’ value A rough set based GDSS approach to integrate multi-type preference information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1