Team JU_PAD @ AutoMin 2021: MoM Generation from Multiparty Meeting Transcript

Sarthak Pan, Palash Nandi, Dipankar Das
{"title":"Team JU_PAD @ AutoMin 2021: MoM Generation from Multiparty Meeting Transcript","authors":"Sarthak Pan, Palash Nandi, Dipankar Das","doi":"10.21437/automin.2021-5","DOIUrl":null,"url":null,"abstract":"Use of online meeting platforms for long multi-party discus-sion is gradually increasing and generation of Minutes of Meeting (MoM) is crucial for subsequent events. MOM records all key issues, possible solutions, decisions and actions taken dur-ing the meeting. Hence the importance of minuting cannot be overemphasized in a time when a significant number of meet-ings take place in the virtual space. Automatic generation of MoM can potentially save up to 80% of time while revisiting. In this paper, we present an abstractive approach for automatic generation of meeting minutes. It aims to deal with problems like the nature of spoken text, length of transcripts and lack of document structure and conversation fillers. The system is evaluated on a test dataset. The evaluation score is calculated by both manual and automatic systems. Text summarization metrics ROUGE-1, ROUGE-2, ROUGE-L [1] are used for automated scoring and metrics Adequacy, Grammatical Correctness, Fluency are used for manual scoring. The proposed model achieved 0.221, 0.046, 0,125 for ROUGE-1, ROUGE-2 , ROUGE-L respectively in automated evaluation and 3.5/5, 3/5, 3/5 for Adequacy, Grammatical Correctness, Fluency respectively in manual evaluation.","PeriodicalId":186820,"journal":{"name":"First Shared Task on Automatic Minuting at Interspeech 2021","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Shared Task on Automatic Minuting at Interspeech 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/automin.2021-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Use of online meeting platforms for long multi-party discus-sion is gradually increasing and generation of Minutes of Meeting (MoM) is crucial for subsequent events. MOM records all key issues, possible solutions, decisions and actions taken dur-ing the meeting. Hence the importance of minuting cannot be overemphasized in a time when a significant number of meet-ings take place in the virtual space. Automatic generation of MoM can potentially save up to 80% of time while revisiting. In this paper, we present an abstractive approach for automatic generation of meeting minutes. It aims to deal with problems like the nature of spoken text, length of transcripts and lack of document structure and conversation fillers. The system is evaluated on a test dataset. The evaluation score is calculated by both manual and automatic systems. Text summarization metrics ROUGE-1, ROUGE-2, ROUGE-L [1] are used for automated scoring and metrics Adequacy, Grammatical Correctness, Fluency are used for manual scoring. The proposed model achieved 0.221, 0.046, 0,125 for ROUGE-1, ROUGE-2 , ROUGE-L respectively in automated evaluation and 3.5/5, 3/5, 3/5 for Adequacy, Grammatical Correctness, Fluency respectively in manual evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
团队JU_PAD @ AutoMin 2021:多方会议记录中的MoM一代
使用在线会议平台进行长时间多方讨论的情况正在逐渐增加,会议记录(MoM)的生成对后续事件至关重要。MOM记录会议期间所有的关键问题、可能的解决方案、决定和行动。因此,当大量会议在虚拟空间中举行时,会议记录的重要性再怎么强调也不为过。自动生成MoM可以在重新访问时节省高达80%的时间。本文提出了一种自动生成会议记录的抽象方法。它旨在解决口语文本的性质、文本的长度以及缺乏文档结构和会话填充等问题。系统在测试数据集上进行评估。评估分数由人工和自动系统计算。文本摘要指标ROUGE-1、ROUGE-2、ROUGE-L[1]用于自动评分,而指标充分性、语法正确性、流畅性用于手动评分。该模型在ROUGE-1、ROUGE-2、ROUGE-L的自动评估中分别取得0.221、0.046、0,125的成绩,在手动评估中分别取得3.5/ 5,3 / 5,3 /5的成绩,在充分性、语法正确性和流畅性方面取得了3/5的成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overview of the First Shared Task on Automatic Minuting (AutoMin) at Interspeech 2021 Team UEDIN @ AutoMin 2021: Creating Minutes by Learning to Filter an Extracted Summary Team Matus and Francesco @ AutoMin 2021: Towards Neural Summarization of Meetings Team ABC @ AutoMin 2021: Generating Readable Minutes with a BART-based Automatic Minuting Approach Team JU_PAD @ AutoMin 2021: MoM Generation from Multiparty Meeting Transcript
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1