Efficient Meta-Learning for Continual Learning with Taylor Expansion Approximation

Xiaohan Zou, Tong Lin
{"title":"Efficient Meta-Learning for Continual Learning with Taylor Expansion Approximation","authors":"Xiaohan Zou, Tong Lin","doi":"10.1109/IJCNN55064.2022.9892669","DOIUrl":null,"url":null,"abstract":"Continual learning aims to alleviate catastrophic forgetting when handling consecutive tasks under non-stationary distributions. Gradient-based meta-learning algorithms have shown the capability to implicitly solve the transfer-interference trade-off problem between different examples. However, they still suffer from the catastrophic forgetting problem in the setting of continual learning, since the past data of previous tasks are no longer available. In this work, we propose a novel efficient meta-learning algorithm for solving the online continual learning problem, where the regularization terms and learning rates are adapted to the Taylor approximation of the parameter's importance to mitigate forgetting. The proposed method expresses the gradient of the meta-loss in closed-form and thus avoid computing second-order derivative which is computationally inhibitable. We also use Proximal Gradient Descent to further improve computational efficiency and accuracy. Experiments on diverse benchmarks show that our method achieves better or on-par performance and much higher efficiency compared to the state-of-the-art approaches.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Continual learning aims to alleviate catastrophic forgetting when handling consecutive tasks under non-stationary distributions. Gradient-based meta-learning algorithms have shown the capability to implicitly solve the transfer-interference trade-off problem between different examples. However, they still suffer from the catastrophic forgetting problem in the setting of continual learning, since the past data of previous tasks are no longer available. In this work, we propose a novel efficient meta-learning algorithm for solving the online continual learning problem, where the regularization terms and learning rates are adapted to the Taylor approximation of the parameter's importance to mitigate forgetting. The proposed method expresses the gradient of the meta-loss in closed-form and thus avoid computing second-order derivative which is computationally inhibitable. We also use Proximal Gradient Descent to further improve computational efficiency and accuracy. Experiments on diverse benchmarks show that our method achieves better or on-par performance and much higher efficiency compared to the state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于泰勒展开近似的持续学习的有效元学习
持续学习旨在减轻在非平稳分布下处理连续任务时的灾难性遗忘。基于梯度的元学习算法已经显示出隐式解决不同示例之间迁移-干扰权衡问题的能力。然而,在持续学习的情况下,他们仍然存在灾难性的遗忘问题,因为以前任务的过去数据不再可用。在这项工作中,我们提出了一种新的有效的元学习算法来解决在线持续学习问题,其中正则化项和学习率适应参数重要性的泰勒近似,以减轻遗忘。该方法以封闭形式表示元损失的梯度,从而避免了二阶导数的计算抑制。为了进一步提高计算效率和精度,我们还使用了近端梯度下降。在不同基准上的实验表明,与最先进的方法相比,我们的方法实现了更好或同等的性能和更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameterization of Vector Symbolic Approach for Sequence Encoding Based Visual Place Recognition Nested compression of convolutional neural networks with Tucker-2 decomposition SQL-Rank++: A Novel Listwise Approach for Collaborative Ranking with Implicit Feedback ACTSS: Input Detection Defense against Backdoor Attacks via Activation Subset Scanning ADV-ResNet: Residual Network with Controlled Adversarial Regularization for Effective Classification of Practical Time Series Under Training Data Scarcity Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1